Kinematics is a branch of classical mechanics that describes the motion of points, bodies, and systems of bodies without considering the forces that cause such motion. For serial robot manipulators, kinematics consists of describing the open chain geometry as well as the position, velocity and/or acceleration of each one of its components. Rigid serial robot manipulators are designed as a sequence of rigid bodies, called links, connected by motor-actuated pairs, called joints, that provide relative motion between consecutive links. Two kinematic problems of special relevance for serial robots are: - Singularities: are the configurations where the robot loses at least one degree of freedom (DOF). This is equivalent to: (a) The robot cannot translate or rotate its end-effector in at least one direction.
(b) Unbounded joint velocities are required to generate finite linear and angular velocities.
Either if it is real-time teleoperation or off-line path planning, singularities must be addressed to make the robot exhibit a good performance for a given task. The objective is not only to identify the singularities and their associated singular directions but to design strategies to avoid or handle them.
- Inverse kinematic problem: Given a particular position and orientation of the end-effector, also known as the end-effector pose, the inverse kinematics consists of finding the configurations that provide such desired pose. The importance of the inverse kinematics relies on its role in the programming and control of serial robots. Besides, since for each given pose the inverse kinematics has up to sixteen different solutions, the objective is to find a closed-form method for solving this problem, since closed-form methods allow to obtain all the solutions in a compact form.
The main goal of the Ph.D. dissertation is to contribute to the solution of both problems. In particular, with respect to the singularity problem, a novel scheme for the identification of the singularities and their associated singular directions is introduced. Moreover, geometric algebra is used to simplify such identification and to provide a distance function in the configuration space of the robot that allows the definition of algorithms for avoiding them.
With respect to the inverse kinematics, redundant robots are reduced to non-redundant ones by selecting a set of joints, denoted redundant joints, and by parameterizing their joint variables. This selection is made through a workspace analysis which also provides an upper bound for the number of different closed-form solutions. Once these joints have been identified, several closed-form methods developed for non-redundant manipulators can be applied to obtain the analytical expressions of all the solutions. One of these methods is a novel strategy developed using again the conformal model of the spatial geometric algebra.
To sum up, the Ph.D dissertation provides a rigorous analysis of the two above-mentioned kinematic problems as well as novel strategies for solving them. To illustrate the different results introduced in the Ph.D. memory, examples are given at the end of each of its chapters.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados