Ayuda
Ir al contenido

Dialnet


Análisis de movimiento mediante textil inteligente

    1. [1] Centro de Automática y Robótica

      Centro de Automática y Robótica

      Madrid, España

    2. [2] Universidade Federal do Espírito Santo

      Universidade Federal do Espírito Santo

      Brasil

    3. [3] Universidade Estadual de Campinas

      Universidade Estadual de Campinas

      Brasil

  • Localización: XLIII Jornadas de Automática: libro de actas: 7, 8 y 9 de septiembre de 2022, Logroño (La Rioja) / coord. por Carlos Balaguer Bernaldo de Quirós, José Manuel Andújar Márquez, Ramón Costa Castelló, C. Ocampo-Martínez, Juan Jesús Fernández Lozano, Matilde Santos Peñas, José Simó, Montserrat Gil Martínez, José Luis Calvo-Rolle, Raúl Marín, Eduardo Rocón de Lima, Elisabet Estévez Estévez, Pedro Jesús Cabrera Santana, David Muñoz de la Peña Sequedo, José Luis Guzmán Sánchez, José Luis Pitarch Pérez, Óscar Reinoso García, Óscar Déniz Suárez, Emilio Jiménez Macías, Vanesa Loureiro-Vázquez, 2022, ISBN 978-84-9749-841-8, págs. 66-70
  • Idioma: español
  • Títulos paralelos:
    • Smart garment for movement analysis
  • Enlaces
  • Resumen
    • español

      Este artículo presenta el desarrollo de un textil inteligente (smart garment) portátil dotado de 30 sensores de fibra óptica multiplexados que, a través de algoritmos de Inteligencia Artificial (IA), es capaz de clasificar de actividades de múltiples sujetos. Se evalúan seis actividades diarias: de pie, sentado, en cuclillas, brazos arriba y abajo, caminar y correr. El clasificador utilizado es el de k vecinos más cercanos y los resultados de 10 ensayos de todos los voluntarios presentaron una precisión de 94,00 (0,14) %. La cadencia y la frecuencia respiratoria se estimaron y compararon con los datos de una unidad de medición inercial ubicada en la parte posterior de la prenda. El error más alto fue del 2,22 %. El enfoque propuesto presentó la viabilidad para el reconocimiento de actividad y la extracción de parámetros relacionados con el movimiento, en el ámbito de los desarrollos en Healthcare 4.0.

    • English

      This paper presents the development of a wearable smart garment equipped with 30 multiplexed fiber optic sensors that, through Artificial Intelligence (AI) algorithms, can classify multiple subjects' activities. Six daily activities are evaluated: standing, sitting, squatting, arms up and down, walking, and running. The classifier used is k-nearest neighbors, and results from 10 trials of all volunteers showed an accuracy of 94.00 (0.14)%. Cadence and respiratory rate were estimated and compared with data from an inertial measurement unit located on the back of the garment. The highest error was 2.22%. The proposed approach presented feasibility for activity recognition and extraction of motion-related parameters in the scope of Healthcare 4.0 developments.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno