Ayuda
Ir al contenido

Dialnet


Novel electrospun polyhydroxyalkanoate based high barrier and active biopapers of interest in food packaging

  • Autores: Adriane Cherpinski Correa
  • Directores de la Tesis: José María Lagarón (dir. tes.), Amparo Chiralt Boix (tut. tes.)
  • Lectura: En la Universitat Politècnica de València ( España ) en 2019
  • Idioma: español
  • Tribunal Calificador de la Tesis: Branka Pilic (presid.), María Consuelo González Martínez (secret.), Francisco Javier González Benito (voc.)
  • Programa de doctorado: Programa de Doctorado en Ciencia, Tecnología y Gestión Alimentaria por la Universitat Politècnica de València
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: RiuNet
  • Resumen
    • The present PhD thesis aimed to develop novel active fiber based biodegradable layers obtained by electrospinning, so-called biopapers, with water and gas barrier and oxygen scavenging properties for their potential use as paper coatings or packaging interlayers in fiber based packaging.

      In a first study, PHB biopapers were obtained by electrospinning, by means of two types of collectors namely, flat plate and rotation drum collectors, to evaluate the influence of the alignment of fibers. Annealing post-processing below the polymer melting point was carried at different temperatures, isothermal times and cooling processes to obtain transparent and pore free continuous films by fibers coalescence which in turn led to interlayer adhesion, enhanced barrier and optical properties.

      In a second study, mono and multilayer biopapers comprising PHB, PVOH and PLA were deposited onto a conventional uncoated paper substrate, using the cited two collectors; and the electrospinning processing time was varied to produce different thickneses. To enhance adhesion to the paper substrate, optical and barrier performance of the multilayer, the biopapers were subjected to an annealed process as described and optimized in the first study. Regarding water barrier, the system paper/PVOH/PHB presented the highest barrier performance.

      In a third study, environmentally friendly materials such as cellulose based nanopapers, i.e. gas barrier layers made of cellulose nanofibrils (CNFs) and lignocellulose nanofibrils (LCNFs), were obtained and coated with the water barrier electrospun PHA biopapers. As a result, the hydrophobic character of the nanopapers was significantly improved by the electrospun biopapers. Moreover, these also exhibited a more balanced mechanical performance.

      In a fourth study, active oxygen scavenging PHA biopapers were developed, in which palladium nanoparticles (PdNP) were used as catalysts to scavenge oxygen from the headspace. The main difficulty associated with nanoparticles is to keep them dispersed, so in this work we assessed the use of CTAB and TEOS surfactants as food contact permitted substances to help dispersion and distribution of the PdNP within the PHA fibers. As a result, oxygen scavenging nanocomposite biopapers made of electrospun PHB and PdNP were prepared, followed by annealing treatment to obtain homogeneous and continuous active layers. The oxygen scavenging capacity at 100% relative humidity (RH) of the biopapers in fiber form showed better performance than their annealed specimens as expected, but in general this was not considered optimal.

      In order to improve further the oxygen scavenging capacity, even at a low relative humidity and in film form, a fifth study, developed multilayered biopapers made of PCL and PHA coated on conventional cellulose paper. The PCL/PdNP nanocomposites showed much more enhanced oxygen scavenging performance in comparison with the above PHA/PdNP system. This result is attributed to the higher fractional free volume of the PCL polymer that allows moisture, hydrogen and oxygen permeation to trigger the catalytic scavenging reaction.

      Finally, a sixth study, developed a solvent casting high gas barrier and active oxygen scavenging layer concept based on PdNP, CNC and EVOH. Thus, CNC and TEMPO oxidized CNC, were used to produce in situ PdNP, which were incorporated into the EVOH polymer matrix. The TEMPO oxidized CNC exhibited higher oxygen absorption due to the generated carboxylic groups.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno