Ayuda
Ir al contenido

Dialnet


Gene Signatures Research Involved in Cancer Using Machine Learning

    1. [1] Universidade da Coruña

      Universidade da Coruña

      A Coruña, España

  • Localización: XoveTIC 2019: The 2nd XoveTIC Conference (XoveTIC 2019), A Coruña, Spain, 5–6 September / Alberto Alvarellos González (ed. lit.), Joaquim de Moura (ed. lit.), Beatriz Botana Barreiro (ed. lit.), Javier Pereira-Loureiro (ed. lit.), Manuel Francisco González Penedo (ed. lit.), 2019, ISBN 978-3-03921-444-0
  • Idioma: inglés
  • Enlaces
  • Resumen
    • With the cheapening of mass sequencing techniques and the rise of computer technologies, capable of analyzing a huge amount of data, it is necessary nowadays that both branches mutually benefit. Transcriptomics, in this case, is a branch of biology focused on the study of mRNA molecules, among others. The quantification of these molecules gives us information about the expression that a gene is having at a given moment. Having information on the expression of the approximately 20,000 genes harbored by human beings is a really useful source of information for the study of certain conditions and/or pathologies. In this work, patient expression -omic data data have been used to offer a new analysis methodology through Machine Learning. The results of this methodology were compared with a conventional methodology to observe how they differed and how they resembled each other. These techniques, therefore, offer a new mechanism for the search of genetic signatures involved, in this case, with cancer.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno