Ayuda
Ir al contenido

Dialnet


Predicting teacher resilience by using artificial neural networks: influence of burnout and stress by COVID-19

  • Autores: Juan Pedro Martínez Ramón, Francisco Manuel Morales Rodríguez, Sergio Pérez López, Inmaculada Méndez Mateo, Cecilia Ruiz Esteban
  • Localización: Anales de psicología, ISSN-e 1695-2294, ISSN 0212-9728, Vol. 39, Nº. 1, 2023, págs. 100-111
  • Idioma: inglés
  • Títulos paralelos:
    • Predicción de la resiliencia docente mediante redes neuronales artificiales: influencia del burnout y del estrés por COVID-19
  • Enlaces
  • Resumen
    • español

      Antecedentes: La resiliencia en el profesorado permite afrontar situaciones difíciles y reponerse a la adversidad existiendo diferencias de género al respecto. Asimismo, la inteligencia artificial y las técnicas asociadas a ella han resultado ser de gran utilidad para predecir variables educativas y estudiar la interconexión entre ellas tras la COVID-19. Dicho esto, el objetivo general de esta investigación fue predecir los niveles de resiliencia en las profesoras y profesores de Secundaria a través del diseño de una red neuronal artificial (RNA). Método: Se administró la Escala Breve de Afrontamiento Resiliente, el Inventario de Burnout de Maslach y el Cuestionario de Estrés frente a la COVID-19 a 401 docentes de secundaria (70.6% mujeres) de centros educativos del sureste español, con una edad media de 44.36 años (DT= 9.38). Resultados: Se hallaron diferencias en la configuración de los modelos predictivos de la resiliencia entre profesoras y profesores contribuyendo las variables independientes en diferente grado en función del género. Conclusiones: Se pone de manifiesto la utilidad de las RNA en el ámbito educativo y la necesidad de diseñar programas más ajustados.

    • English

      Background: Resilience in teachers allows them to face difficult situations to recover from adversity and there are gender differences. Likewise, artificial intelligence and the techniques associated with it have proven to be very useful in predicting educational variables and studying the interconnection between them after COVID-19. That said, the general objective of this research was to predict the levels of resilience in secondary school teachers through the design of an artificial neural network (ANN). Method: The Brief Resilient Coping Scale, the Maslach Burnout Inventory and the COVID-19 Stress Questionnaire were administered to 401 secondary school teachers (70.6% female) from schools in southeastern Spain, with a mean age of 44.36 years (SD = 9.38). Results: Differences were found in the configuration of the predictive models of resilience between male and female teachers, with the independent variables contributing to different degrees depending on gender. Conclusions: It is highlighted the usefulness of ANNs in the educational setting and the need to design more adjusted programs.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno