Cartagena, España
Estados Unidos
El agua es un bien escaso, especialmente en las regiones áridas y semiáridas. Este es el caso de la Cuenca Mediterránea, donde sus condiciones demográficas y climáticas la hacen idónea para el cultivo de frutas y hortalizas, demandando un volumen mayor de recursos hídricos. Las estrategias de riego deficitario se han mostrado exitosas, pero resulta primordial el control del estrés hídrico de los cultivos. La medida directa del mismo se encuentra actualmente asociada al potencial hídrico de tallo a mediodía, cuya medida es costosa en tiempo y labores asociadas. A nivel agrario sería interesante definir unos niveles cualitativos del estrés hídrico del cultivo y poder estimarlos a partir de variables cuya medida sea automatizable, de manera que se puedan implementar sistemas de riego inteligente basados en las necesidades hídricas del cultivo. En este trabajo se presenta un estudio preliminar para la obtención de un modelo capaz de predecir cinco niveles de estrés del cultivo a partir de los datos temporales de potencial matricial y contenido volumétrico de agua en el suelo y de diferentes variables agro-climáticas. Se han evaluado múltiples algoritmos de Machine Learning, obteniéndose una precisión máxima en la estimación del 72,4 %.
Water is a limited resource in arid and semi-arid regions. This is the case of the Mediterranean area, where its demographic and climatic conditions make it particularly prone to farming, demanding a major percentage of water resources. Deficit irrigation strategies have proved to be successful, but it is essential to control crop water stress. The measurement of crop water stress is currently associated with midday stem water potential, which is very time-consuming. At an agricultural perspective, it would be interesting to define qualitative levels of crop water stress and to be able to estimate them from variables whose measurement can be automated, so that intelligent irrigation systems can be implemented based on the water needs of the crop. In this work we present a preliminary study to obtain a model capable of predicting five levels of crop water stress from time data of water potential and volumetric water content in the soil and different agro-climatic variables. Multiple Machine Learning algorithms have been evaluated, obtaining a maximum estimation accuracy of 72.4%.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados