Ayuda
Ir al contenido

Dialnet


Resumen de Development of an Adaptive Trajectory Tracking Control of Wheeled Mobile Robot

Guiovanny Suarez Rivera, Nelson David Muñoz, Henry Mauricio Vásquez Carvajal

  • español

    Los métodos clásicos de modelamiento y control aplicados a robots móviles de locomoción diferencial generan ecuaciones matemáticas que representan con aproximación la dinámica del sistema y funcionan relativamente bien cuando el sistema es lineal en un rango específico de trabajo. Sin embargo, pueden presentar baja precisión cuando hay muchas variaciones de la dinámica en el tiempo o se presentan perturbaciones.  Para solucionar este problema se empleó un método recursivo de mínimos cuadrados (RLS) que usa una estructura en tiempo discreto de primer orden del modelo autorregresivo con variable exógena (ARX). Se realiza el diseño y sintonización de controladores autoajustables adaptativos PID en margen de fase y en asignación de polos. El principal aporte de esta metodología es que permite la actualización permanente y en línea (on–line) del modelo del robot y de los parámetros de los controladores autoajustables adaptativos PID, además, se implementó una técnica de análisis de estabilidad de Lyapunov para el control de seguimiento de trayectorias y de caminos, esto hace que los errores generados en el posicionamiento y la orientación del robot al realizar una determinada tarea tiendan asintóticamente a cero. El desempeño de los controladores autoajustables adaptativos PID es medido a través de la implementación de los criterios de la integral del error, lo cuales permiten determinar el controlador de mejor rendimiento, siendo para este caso el del tipo autoajustable adaptivo PID en asignación de polos, permitiendo al robot móvil mayor precisión en el seguimiento de las trayectorias y caminos asignados, así como un menor desgaste mecánico y energético, debidos a sus movimientos suaves y precisos.

  • English

    Classical modeling and control methods applied to differential locomotion mobile robots generate mathematical equations that approximate the dynamics of the system and work relatively well when the system is linear in a specific range. However, they may have low accuracy when there are many variations of the dynamics over time or disturbances occur. To solve this problem, we used a recursive least squares (RLS) method that uses a discrete-time structure first-order autoregressive model with exogenous variable (ARX). We design and modify PID adaptive self-adjusting controllers in phase margin and pole allocation. The main contribution of this methodology is that it allows the permanent and online update of the robot model and the parameters of the adaptive self-adjusting PID controllers. In addition, a Lyapunov stability analysis technique was implemented for path and trajectory tracking control, this makes the errors generated in the positioning and orientation of the robot when performing a given task tend asymptotically to zero.  The performance of the PID adaptive self-adjusting controllers is measured through the implementation of the criteria of the integral of the error, which allows to determine the controller of best performance, being in this case, the PID adaptive self-adjusting type in pole assignment, allowing the mobile robot greater precision in tracking the trajectories and paths assigned, as well as less mechanical and energy wear, due to its smooth and precise movements.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus