Ayuda
Ir al contenido

Dialnet


Teaching Enzyme Catalysis Using Interactive Molecular Dynamics in Virtual Reality

    1. [1] University of Bristol

      University of Bristol

      Reino Unido

  • Localización: Journal of chemical education, ISSN 0021-9584, Vol. 96, Nº 11, 2019, págs. 2488-2496
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The reemergence of virtual reality (VR) in the past few years has led to affordable, high-quality commodity hardware that can offer new ways to teach, communicate, and engage with complex concepts. In a higher-education context, these immersive technologies make it possible to teach complex molecular topics in a way that may aid or even supersede traditional approaches such as molecular models, textbook images, and traditional screen-based computational environments. In this work we describe a study involving 22 third-year UK undergraduate chemistry students who undertook a traditional computational chemistry class complemented by an additional component which we designed to utilize real-time interactive molecular dynamics simulations in VR (iMD-VR). Exploiting the flexibility of an open-source iMD-VR framework which we recently described, the students were given three short tasks to complete in iMD-VR: (1) interactive rearrangement of the chorismate molecule to prephenate using forces obtained from density functional theory calculations; (2) unbinding of chorismate from the active site chorismate mutase enzyme using molecular mechanics forces calculated in real-time; and (3) docking of chorismate with chorismate mutase using real-time molecular mechanics forces. A student survey indicated that most students found the iMD-VR component more engaging than the traditional approach, and also that it improved their perceived educational outcomes and their interest in continuing on in the field of computational sciences.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno