Ayuda
Ir al contenido

Dialnet


Resumen de Las redes neuronales y la evaluación del riesgo de crédito

Fredy Ocaris Pérez Ramírez, Horacio Fernández Castaño

  • A pesar del escepticismo del mundo académico sobre los avances de la inteligencia artificial, las redes neuronales han abierto un campo de exploración bursátil que aún tiene mucho por investigar. Atendiendo a las ventajas del uso de las redes neuronales artificiales (ANN, por sus siglas en inglés) y a su capacidad para estimar modelos no lineales, en este artículo se muestra la aplicación de las redes neuronales a la cuantificación del riesgo de crédito. Además, se hace el desarrollo teórico de los fundamentos básicos de las redes neuronales. Para presentar las metodologías de medición de riesgo de crédito basados en redes neuronales, y aplicarlas a la base de datos de una cartera comercial, fue necesario elaborar un análisis exploratorio de cada una de las variables e investigar la correlación entre ellas. El objetivo del análisis es encontrar algunas relaciones para grupos determinados de la población, de acuerdo con sus características particulares. Por tanto, se cruzan variables de cada cliente, del crédito y del comportamiento contra la variable default (fallidos y no fallidos). Variable que establece un procedimiento de clasificación, y permite determinar las ponderaciones necesarias y, además, establece la probabilidad de fallido.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus