An in vitro method of growing bacteria as a defined nutrient‐depleted biofilm is proposed. The medium was defined nutritionally in terms of the quantitative composition and by the total amount of nutrient required to achieve a defined population size. Escherichia coli and Burkholderia cepacia were incubated on a filter support placed on a defined volume of solid medium. The change of biomass of the biofilm population was compared with the change in a planktonic culture. The size of the population in stationary phase was proportional to the concentration of limiting substrate up to 40 μmol cm−2 glucose for E. coli and up to 2·7 × 10−9 mol cm−2 iron for B. cepacia. Escherichia coli growing exponentially had a growth rate of μ = 0·30 h−1 in a biofilm and μ = 0·96 h−1 in planktonic culture. The growth rate, μ, for exponentially growing B. cepacia in a biofilm was 1·12 h−1 and in planktonic culture 0·78 h−1. This method allows the limitation of the size of a biofilm population to a chosen value.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados