This paper presents a projective reconstruction method of electrical impedance distribution using two boundary measurements of current-voltage data. The proposed method has a major advantage over existing electrical impedance tomography systems: relatively high resolution impedance image in a near-surface region underneath the voltage-sensing probe that is placed on a skin surface. We attach two pairs of electrodes on the border of the probe in such a way that each pair of electrodes generates electrical current flowing underneath the voltage-sensing probe and two currents flow across each other. A careful analysis of the measured data with respect to local perturbation of admittivity leads to the projective reconstruction method and its rationale. Numerical simulations show that the proposed method successfully reconstructs high resolution image of local perturbation of admittivity, due to object position changes or admittivity value changes or the both, in a near-surface region underneath the probe
© 2001-2024 Fundación Dialnet · Todos los derechos reservados