Current transport network owners are focused on offering services on top of the infrastructures they own, while end users have no control over them. Traditionally, this has been their business model, as the cost of building the infrastructures to provide services is considerably high. However, the traffic on Internet has been, and still is, rapidly increasing over the years. Additionally new emerging services are pushing the limits of existing telecommunication infrastructures, particularly transport optical networks. To overcome such situation, network virtualization has been considered as an effective solution for the future optical networks architectures. Thanks to Virtual Optical Networks (VONs), it is possible to create mission-specific logic infrastructures, which fulfil the exact requirements of the applications that will run on top of them, sharing a unique physical substrate. However, the applicability of virtualization techniques to the optical domain is still under research, being on key point the mapping of the virtual resources to the actual physical ones. However, virtualization per se does not provide a solution flexible enough in terms of bandwidth utilization. For this to happen, an equally flexible transport technology must be adopted. Elastic Optical Networks (EONs) have been presented as an efficient solution for flexible bandwidth allocation. Additionally, due to the dinamicity of the traffic patterns that such virtual networks will face, it is highly desirable to provide a physical substrate that will help on keeping the associated operational expenditures (OPEX) at low levels, being a very important parameter the energy consumption. The energy consumption topic has been subject of big research efforts in order to provide more energy efficient optical transport networks, which, at their turn, will help on the creation of less costly virtual infrastructures. This thesis is devoted to the study of resource allocation to VONs, aiming to provide a flexible, efficient and optimized environment for the embedding of the VONs to the actual physical substrate. The considered scenario is composed of an underlying optical transport network and multiple client VONs that have to be allocated on top. In such scenario, a key aspect relates to how actual resources are associated to the virtual ones, guaranteeing the isolation among VONs and satisfying the resources requirements of every one of them. After an introduction to the thesis, chapter 2 surveys nowadays optical network infrastructures, concluding on the need to move towards a more dynamic and efficient optical network infrastructure. Next, it proceeds to summarize the state of the art of the concepts that enable for such network architecture, namely, VONs, EONs and energy efficient optical infrastructures. Then, chapters 3, 4 and 5 focus on providing solutions to optimize specific aspects of these enabling concepts. More in details, chapter 3 studies the main challenges on the VON embedding problem and presents solutions that allow for an optimized resoure assignment to VONs in a physical substrate depending on the VONs characteristics and the sppecific network substrate. Chapter 4 proposes the Split Spectrum (SS) approach as a way to improve the spectrum utilization of EONs. Finally, chapter 5 focuses on provide and evaluate routing and architectural solutions in aims to reduce the energy consumption of the optical substrate so as VONs with lower OPEX can be deployed on top of it.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados