Ayuda
Ir al contenido

Dialnet


Resumen de Design and implementation of low complexity adaptive optical OFDM systems for software-defined transmission in elastic optical networks

Laia Nadal Reixats

  • Due to the increasing global IP traffic and the exponential growing demand for broadband services, optical networks are experimenting significant changes. Advanced modulation formats are being implemented at the Digital Signal Processing (DSP) level as key enablers for high data rate transmission. Whereas in the network layer, flexi Dense Wavelength-Division Multiplexing (DWDM) grids are being investigated in order to efficiently use the optical spectrum according to the traffic demand. Enabling these capabilities makes high data rate transmission more feasible. Hence, introducing flexibility in the system is one of the main goals of this thesis. Furthermore, minimizing the cost and enhancing the Spectral Efficiency (SE) of the system are two crucial issues to consider in the transceiver design. This dissertation investigates the use of Optical Orthogonal Frequency Division Multiplexing (O-OFDM) based either on the Fast Fourier Transform (FFT) or the Fast Hartley Transform (FHT) and flexi-grid technology to allow high data rate transmission over the fiber. Different cost-effective solutions for Elastic Optical Networks (EON) are provided. On the one hand, Direct Detection (DD) systems are investigated and proposed to cope with present and future traffic demand. After an introduction to the principles of OFDM and its application in optical systems, the main problems of such modulation is introduced. In particular, Peak-to-Average Power Ratio (PAPR) is presented as a limitation in OFDM systems, as well as clipping and quantization noise. Hence, PAPR reduction techniques are proposed to mitigate these impairments. Additionally, Low Complexity (LC) PAPR reduction techniques based on the FHT have also been presented with a simplified DSP. On the other hand, loading schemes have also been introduced in the analyzed system to combat Chromatic Dispersion (CD) when transmitting over the optical link. Moreover, thanks to Bit Loading (BL) and Power Loading (PL), flexible and software-defined transceivers can be implemented maximizing the spectral efficiency by adapting the data rate to the current demand and the actual network conditions. Specifically, OFDM symbols are created by mapping the different subcarriers with different modulation formats according to the channel profile. Experimental validation of the proposed flexible transceivers is also provided in this dissertation. The benefits of including loading capabilities in the design, such as enabling high data rate and software-defined transmission, are highlighted.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus