Ayuda
Ir al contenido

Dialnet


Caracterización y clasificación de hipersuperficies en los espacios pseudo-riemannianos de curvatura constante

  • Autores: Luis José Alías Linares
  • Directores de la Tesis: Ángel Ferrández Izquierdo (dir. tes.), Pascual Lucas Saorín (codir. tes.)
  • Lectura: En la Universidad de Murcia ( España ) en 1994
  • Idioma: español
  • Tribunal Calificador de la Tesis: María Luisa Fernández Rodríguez (presid.), Salvador Segura Gomis (secret.), Manuel de León (voc.), Alfonso Romero Sarabia (voc.), Oscar Jesús Garay Bengoechea (voc.)
  • Materias:
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • EN ESTA MEMORIA SE ABORDAN DOS CUESTIONES REFERENTES A LA CARACTERIZACION Y CLASIFICACION DE HIPERSUPERFICIES EN LOS ESPACIOS PSEUDORIEMANNIANOS DE CURVATURA CONSTANTE QUE GENERALIZAN O EXTIENDEN IMPORTANTES PROBLEMAS PLANTEADOS Y RESUELTOS POR TAKAHASHI, CHEN, GARAY, HASANIS, VLACHOS, FERRANDEZ, LUCAS, ETC, PARA ESTA CLASIFICACION Y CARACTERIZACION SE UTILIZAN ALGUNAS ECUACIONES DIFERENCIALES FORMULADAS EN TERMINOS DEL OPERADOR LAPLACIANO ASOCIADO A LA METRICA DE LA HIPERSUPERFICIE. SE CONSIDERA POR UN LADO LA ECUACION AX=AX+B, DONDE X REPRESENTA LA INMERSION DE LA HIPERSUPERFICIE, A ES UN ENDOMORFISMO EN CADA UNO DE LOS ESPACIOS PSEUDORIEMANNIANOS DE CURVATURA CONSTANTE, Y B ES UN VECTOR FIJO. POR OTRO LADO SE CONSIDERA LA ECUACION , DONDE H ES LA CURVATURA MEDIA. TRAS ESTUDIAR ESTAS CONDICIONES SE PRUEBAN DIVERSOS TEOREMAS DE CARACTERIZACION Y DE CLASIFICACION DE HIPERSUPERFICIES, OBTENIENDOSE UNA INTERPRETACION GEOMETRICA INTERESANTE DE LAS ECUACIONES QUE ESTUDIA, Y SE PONEN DE MANIFIESTO LAS PECULIARIDADES QUE TIENE ESTE PROBLEMA DE CLASIFICACION EN EL CASO PSEUDORIEMANNIANO, FRENTE AL CASO RIEMANNIANO.

      SE SUMINISTRAN ASI MISMO NUMEROSOS EJEMPLOS ILUSTRATIVOS DE HIPERSUPERFICIES QUE VERIFICAN LAS DIFERENTES CONDICIONES QUE SE VAN INTRODUCIENDO.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno