Flavio Forti
El estudio de la unión de un ligando con un receptor es de particular relevancia en el desarrollo de fármacos, donde se persigue encontrar un ligando con elevada afinidad hacia un determinado receptor. El ligando se une al receptor en el denominado “sitio de unión”. El proceso de unión puede dividirse en 2 etapas: i) difusión del ligando a través del receptor hasta el sitio de unión, y ii) la selección de aquella conformación (bioactiva) que cumple con las características geométricas y fisicoquímicas que le permiten unirse al receptor. En la presente memoria se ha estudiado la difusión molecular del ligando a través de la matriz proteica hasta el sitio de unión, así como la selección de la conformación bioactiva implicada en el reconocimiento ligando-receptor. En la primera parte se ha desarrollado una metodología Multinivel que proporciona un método eficiente para la exploración conformacional de moléculas tipo fármaco, permitiendo identificar estructuras estables y su población relativa. Hace uso de una exploración conformacional a nivel RM1 y posterior refinamiento a nivel más robusto de teoría: B3LYP y MP2. Se consigue así un buen balance costo/calidad para la estimación precisa de la población relativa de los confórmeros relevantes. Para compuestos en solución se utiliza la metodología de solvente continuo MST. Esto hace necesario derivar una nueva versión parametrizada del modelo MST para el hamiltoniano RM1. El modelo parametrizado ha probado proveer estimaciones precisas de la energía de solvatación para compuestos neutros. El tratamiento de compuestos iónicos es más delicado, dado que existe una dependencia fuerte entre el factor de escalado utilizado para modular la frontera electrostática entre el solvente y el soluto y el grupo ionizable. El uso de un factor de escalado adaptado al entorno químico provee una estrategia computacional viable para obtener estimaciones precisas de la energía de solvatación para compuestos cargados. Los resultados obtenidos para la histamina neutra son alentadores considerando la complejidad conformacional y tautomérica que presenta y coinciden con la mayoría de los estudios previos. En la segunda parte, se ha estudiado el impacto de las distorsiones de la planaridad del grupo hemo en la afinidad por O(2). Se halló que éstas pueden modular la afinidad de una globina por ligandos bimoleculares. Las distorsiones resultan en una disminución de la afinidad por O(2).con excepción del modo breathing, que implica la compresión-expansión del grupo hemo en el plano. El “breathing” positivo del hemo de la protoglobina “Methanosarcina Acetivorans” (MaPgb) podría contribuir a la alta afinidad por O(2) reportada dado que no presenta efecto distal, habitualmente responsable de la alta afinidad hallada en otras globinas. Por otra parte, la accesibilidad del ligando a esta proteína se logra a través de un sistema de túneles novedoso definido entre las hélices G y B (túnel 1) y B y E (túnel 2). El túnel 2, a diferencia del 1, está siempre abierto. Phe(145)G8 se halla en 2 conformaciones: abierta y cerrada, que regula la migración de ligandos a través del 1. La dimerización y la presencia de ligando unido al hemo facilitan la apertura del 1. La presencia del ligando unido al hemo es detectada por Phe(93)E11, y transmitida a Phe(145)G8 a través del cambio de las hélices B y E. Esto proporciona una explicación a los estudios cinéticos de Cristiano Viappiani. Cabe pensar que las conformaciones de ligación lenta y rápida reflejan la apertura del túnel 1 cuando se ha fijado un primer ligando en el grupo hemo. MaPgb podría participar en un proceso bimolecular, donde la entrada de un ligando facilitara de un segundo.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados