Ayuda
Ir al contenido

Dialnet


Hardware design of task superscalar architecture

  • Autores: Fahimeh Yazdanpanah Ahmadabadi
  • Directores de la Tesis: Daniel Jiménez González (dir. tes.), Carlos Álvarez Martínez (dir. tes.)
  • Lectura: En la Universitat Politècnica de Catalunya (UPC) ( España ) en 2014
  • Idioma: inglés
  • Tribunal Calificador de la Tesis: Eduard Ayguadé Parra (presid.), Vicenç Beltran Querol (secret.), Miquel Pericàs Gleim (voc.)
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: TDX
  • Resumen
    • Exploiting concurrency to achieve greater performance is a difficult and important challenge for current high performance systems. Although the theory is plain, the complexity of traditional parallel programming models in most cases impedes the programmer to harvest performance. Several partitioning granularities have been proposed to better exploit concurrency at task granularity. In this sense, different dynamic software task management systems, such as task-based dataflow programming models, benefit dataflow principles to improve task-level parallelism and overcome the limitations of static task management systems. These models implicitly schedule computation and data and use tasks instead of instructions as a basic work unit, thereby relieving the programmer of explicitly managing parallelism. While these programming models share conceptual similarities with the well-known Out-of-Order superscalar pipelines (e.g., dynamic data dependency analysis and dataflow scheduling), they rely on software-based dependency analysis, which is inherently slow, and limits their scalability when there is fine-grained task granularity and a large amount of tasks. The aforementioned problem increases with the number of available cores. In order to keep all the cores busy and accelerate the overall application performance, it becomes necessary to partition it into more and smaller tasks. The task scheduling (i.e., creation and management of the execution of tasks) in software introduces overheads, and so becomes increasingly inefficient with the number of cores. In contrast, a hardware scheduling solution can achieve greater speed-ups as a hardware task scheduler requires fewer cycles than the software version to dispatch a task. The Task Superscalar is a hybrid dataflow/von-Neumann architecture that exploits the task level parallelism of the program. The Task Superscalar combines the effectiveness of Out-of-Order processors together with the task abstraction, and thereby provides an unified management layer for CMPs which effectively employs processors as functional units. The Task Superscalar has been implemented in software with limited parallelism and high memory consumption due to the nature of the software implementation. In this thesis, a Hardware Task Superscalar architecture is designed to be integrated in a future High Performance Computer with the ability to exploit fine-grained task parallelism. The main contributions of this thesis are: (1) a design of the operational flow of Task Superscalar architecture adapted and improved for hardware implementation, (2) a HDL prototype for latency exploration, (3) a full cycle-accurate simulator of the Hardware Task Superscalar (based on the previously obtained latencies), (4) full design space exploration of the Task Superscalar component configuration (number and size) for systems with different number of processing elements (cores), (5) comparison with a software implementation of a real task-based programming model runtime using real benchmarks, and (6) hardware resource usage exploration of the selected configurations.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno