Ayuda
Ir al contenido

Dialnet


Design, operation and control of novel electrical concepts for offshore wind power plants

  • Autores: Mikel De Prada Gil
  • Directores de la Tesis: Oriol Gomis Bellmunt (dir. tes.), Andreas Sumper (dir. tes.)
  • Lectura: En la Universitat Politècnica de Catalunya (UPC) ( España ) en 2014
  • Idioma: inglés
  • Tribunal Calificador de la Tesis: Anca D. Hansen (presid.), Roberto Villafáfila Robles (secret.), Fernando Bianchi (voc.)
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: TDX
  • Resumen
    • Offshore wind is an emerging energy sector with a huge potential to be tapped in the near future. Offshore Wind Power Plants (OWPPs) are becoming increasingly relevant in Europe and worldwide mainly because the wind speeds are potentially higher and smoother than their onshore counterpart, which leads to higher wind power generation. Moreover, OWPPs have less space limitations constraints, so that it allows the possibility of using larger wind turbines. Nowadays, environmental and social aspects are forcing OWPPs to be constructed further from shore, (which usually leads to deeper waters) and the trend is expected to continue in the coming years. Several studies have demonstrated that if the distance between an OWPP and its grid connection point at the Point of Common Coupling (PCC) exceeds a certain critical distance (approximately 55-70 km), HVDC transmission becomes a more interesting solution than HVAC, since reduce cable energy losses and decrease reactive power requirements. This trend towards larger OWPPs located further away from shore is posing some technical, economic and political challenges that must be overcome to be fully competitive in the longer term compared to other energy sources. Today, there is an important concern about reducing the current Levelised Cost Of Energy (LCOE) of offshore wind projects by improving system reliability and availability, reducing O&M costs and/or increasing energy generation. This thesis aims to propose novel electrical WPP concepts more cost-effective than the existing ones and to comprehensive analyse their technical and economic feasibility. Specific challenges related to the design, optimisation, modelling, operation and control of these new concepts will be addressed in the study. All the concepts presented throughout this thesis, are focused on the collector grid of an OWPP, which encompasses all the necessary equipment to collect the power generated by the wind turbines and to export it to the offshore transmission HVDC platform. The first novel WPP concept assessed can be applied to either an onshore or offshore WPP with a MVAC collection grid connected to the grid through either an HVAC or HVDC transmission link, whilst the rest of the OWPP configurations analysed are motivated by the presence of HVDC technology and its ability to electrically decouple the OWPP from the onshore power system. Thus, the first wind power plant concept evaluated consists in properly derating some specific wind turbines in order to reduce the wake effect within the collection grid and, therefore, to maximise the energy yield by the whole wind power plant during its lifetime of the installation. The following three OWPP concepts analysed arise thanks to the opportunity provided by HVDC technology to operate the collection grid at variable frequency. Thus, the second proposed OWPP concept investigated is based on removing the individual power converter of each wind turbine and connecting a synchronous generator-based OWPP (or a wind turbine cluster) to a single large power converter which operates at variable frequency. Likewise, the third OWPP configuration assessed deals with the optimisation of this aforementioned concept and with the proposal of an hybrid MVAC/MVDC OWPP concept for the offshore collection grid. Regarding the fourth OWPP design, it consists of a DFIG-based OWPP with reduced power converters (approximately 5% of rated slip) connected to a single HVDC substation. This proposal is analysed both static and dynamically by means of simulations. Finally, the last novel OWPP concept presented in this thesis deals with the analysis of an entire offshore wind power plant in DC, with the aim of reducing the losses both in the inter-array and the export cable(s). In general terms, all the novel OWPP concepts analysed suggest a good potential to be applied to future offshore wind power plants by reducing in all the cases the LCOE in comparison with the existing OWPPs.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno