Ayuda
Ir al contenido

Dialnet


Experimental characterization and diagonosis tools for proton exchange membrane fuel cells

  • Autores: Mauricio Ariel Primucci
  • Directores de la Tesis: María Serra Prat (dir. tes.), Jordi Riera i Colomer (dir. tes.)
  • Lectura: En la Universitat Politècnica de Catalunya (UPC) ( España ) en 2012
  • Idioma: inglés
  • Tribunal Calificador de la Tesis: Jordi Llorca Piqué (presid.), Ramón Costa Castelló (secret.), Pedro Gómez Romero (voc.), Alex Omar Franco Lacato (voc.), Félix Manuel Barreras Toledo (voc.)
  • Materias:
  • Enlaces
  • Resumen
    • A fuel cell is a device that gives electric power directly from electrochemical reduction and oxidation reactions. PEM fuel cells present some properties that make them appropriate for portable and transport applications: high efficiency, no emissions, solid electrolyte, low operating temperatures and high power density. However, some technical problems can be improved, durability of the materials and the appropriate control of the operating conditions. One important aspect of the operating conditions is the water management. The right water content is needed in the electrolyte and catalyst layers to maximize the efficiency of the PEMFC by minimizing the voltage losses. Water content in the fuel cell is given basically by the generation of the water in the cathode due to the reaction, the humidity of the inlet gases and the transport trough the membrane. This thesis studies, proposes and compares different experimental characterisation methods aimed to provide performance indicators of the PEMFC water state. A systematic use of Electrochemical Impedance Spectroscopy technique is presented and its results are studied in order to analyse the influence of different operating conditions over the PEMFC response. The variables under analysis include: load current, pressure temperature and gas relative humidity. All these variables are considered with inlet gases feeding: H2/O2 and H2/Air. A set of relevant characteristics from the EIS response has been considered. Several equivalent circuits has been analysed and those that have the best fitting with the experimental EIS data are selected. When air is used as oxidant, a simple equivalent circuit with a resistance and a Warburg element is proposed. When Oxygen is used as oxidant, a more complex equivalent circuit is needed. A detailed sensitive analysis is performed indicating those parameters that best capture the influence of the operating conditions. A new experimental characterisation technique, based on the inlet gases humidification interruption is proposed. This dynamic technique combines the information extracted from EIS and the temporal response in order to study the water transport and storage effects in the PEMFC. Two advantages of this proposed technique is the simple hardware configuration used and the relative low impact on the fuel cell response, making attractive the humidification interruption as an in-situ technique. Three different sets of performance indicators are proposed as diagnosis tool. Relevant Characteristics from the EIS response, if properly monitored, can give a diagnostic of the fuel cell internal state. After an analysis, the chosen ones are: low and high frequency resistances (RLF and RHF) and the frequency of the maximum phase. These RC are helpful to determine if the PEMFC with the current operating conditions is well humidified. If the zone defined by RLF decrease, RHF slight increase and the frequency of the maximum phase increase is minimal, the cathode is optimally humidified. Equivalent Circuit are used in order to give a physical interpretation. The selected parameters as performance indicators are: membrane resistance, Rm, time constant and resistance of diffusion process (using Warburg elements: Tw and Rw). In this case, the humidification of the fuel cell is optimum if the zone where Rw and Tw decrease and Rm has slow increase is minimal. Model Based performance indicators are proposed: Rm, effective diffusion coefficient, Deff and effective active area, Aeff. The optimal humidification occurs when the zone where Deff is stationary and Rm has not changed significantly, is minimal. The parameter Aeff involved in this last diagnosis procedure can be detached from the humidification interruption test and be used to estimate the effective active area and then is also helpful to compare the PEMFC performance in different operating conditions.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno