Ayuda
Ir al contenido

Dialnet


Architectural explorations for streaming accelerators with customized memory layouts

  • Autores: Muhammad Shafiq
  • Directores de la Tesis: Eduard Ayguadé i Parra (dir. tes.), Josep Ignasi Navarro Mas (dir. tes.), Miquel Pericàs Gleim (dir. tes.)
  • Lectura: En la Universitat Politècnica de Catalunya (UPC) ( España ) en 2012
  • Idioma: inglés
  • Tribunal Calificador de la Tesis: Georgi Nedeltchev Gaydadjiev (presid.), Xavier Martorell Bofill (secret.), Osman Unsal García (voc.)
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: TDX
  • Resumen
    • El concepto básico de la arquitectura mono-nucleo en los procesadores de propósito general se ajusta bien a un modelo de programación secuencial. La integración de multiples núcleos en un solo chip ha permitido a los procesadores correr partes del programa en paralelo. Sin embargo, la explotación del enorme paralelismo disponible en muchas aplicaciones de alto rendimiento y de los datos correspondientes es difícil de conseguir usando unicamente multicores de propósito general. La aparición de aceleradores tipo streaming y de los correspondientes modelos de programación han mejorado esta situación proporcionando arquitecturas orientadas al proceso de flujos de datos. La idea básica detrás del diseño de estas arquitecturas responde a la necesidad de procesar conjuntos enormes de datos. Estos dispositivos de alto rendimiento orientados a flujos permiten el procesamiento rapido de datos mediante el uso eficiente de computación paralela y comunicación entre procesos. Los aceleradores streaming orientados a flujos, igual que en otros procesadores, consisten en diversos componentes micro-arquitectonicos como por ejemplo las estructuras de memoria, las unidades de computo, las unidades de control, los canales de Entrada/Salida y controles de Entrada/Salida, etc. Sin embargo, los requisitos del flujo de datos agregan algunas características especiales e imponen otras restricciones que afectan al rendimiento. Estos dispositivos, por lo general, ofrecen un gran número de recursos computacionales, pero obligan a reorganizar los conjuntos de datos en paralelo, maximizando la independiencia para alimentar los recursos de computación en forma de flujos. La disposición de datos en conjuntos independientes de flujos paralelos no es una tarea sencilla. Es posible que se tenga que cambiar la estructura de un algoritmo en su conjunto o, incluso, puede requerir la reescritura del algoritmo desde cero. Sin embargo, todos estos esfuerzos para la reordenación de los patrones de las aplicaciones de acceso a datos puede que no sean muy útiles para lograr un rendimiento óptimo. Esto es debido a las posibles limitaciones microarquitectonicas de la plataforma de destino para los mecanismos hardware de prefetch, el tamaño y la granularidad del almacenamiento local, y la flexibilidad para disponer de forma serial los datos en el interior del almacenamiento local. Las limitaciones de una plataforma de streaming de proposito general para el prefetching de datos, almacenamiento y demas procedimientos para organizar y mantener los datos en forma de flujos paralelos e independientes podría ser eliminado empleando técnicas a nivel micro-arquitectonico. Esto incluye el uso de memorias personalizadas especificamente para las aplicaciones en el front-end de una arquitectura streaming. El objetivo de esta tesis es presentar exploraciones arquitectónicas de los aceleradores streaming con diseños de memoria personalizados. En general, la tesis cubre tres aspectos principales de tales aceleradores. Estos aspectos se pueden clasificar como: i) Diseño de aceleradores de aplicaciones específicas con diseños de memoria personalizados, ii) diseño de aceleradores con memorias personalizadas basados en plantillas, y iii) exploraciones del espacio de diseño para dispositivos orientados a flujos con las memorias estándar y personalizadas. Esta tesis concluye con la propuesta conceptual de una Blacksmith Streaming Architecture (BSArc). El modelo de computación Blacksmith permite la adopción a nivel de hardware de un front-end de aplicación específico utilizando una GPU como back-end. Esto permite maximizar la explotación de la localidad de datos y el paralelismo a nivel de datos de una aplicación mientras que proporciona un flujo mayor de datos al back-end. Consideramos que el diseño de estos procesadores con memorias especializadas debe ser proporcionado por expertos del dominio de aplicación en la forma de plantillas.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno