Ayuda
Ir al contenido

Dialnet


Functionalization of titanium surfaces with TGF-beta inhibitor peptides

  • Autores: Pablo Sevilla Sánchez
  • Directores de la Tesis: Conrado José Aparicio Bádenas (dir. tes.), Francisco Javier Gil Mur (dir. tes.)
  • Lectura: En la Universitat Politècnica de Catalunya (UPC) ( España ) en 2013
  • Idioma: inglés
  • Tribunal Calificador de la Tesis: José María Manero Planella (presid.), Marta Pegueroles Neyra (secret.), Javier Dotor de las Herrerías (voc.), Juan Pou Saracho (voc.), Carlo Prati (voc.)
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: TDX
  • Resumen
    • Esta tesis queda enmarcada en el ámbito de los biomateriales metálicos, concretamente en superficies de titanio desarrolladas para la regeneración ósea. Las aplicaciones más habituales del titanio como biomaterial son los implantes dentales y las prótesis de cadera y rodilla. Estos componentes requieren, en servicio, buena estabilidad y fijación al hueso a largo plazo. El titanio es un material idóneo para el cumplimiento de estos requisitos gracias a su alta resistencia mecánica, tenacidad, resistencia a la corrosión y, sobre todo, por su alta capacidad de osteointegración. En general, el titanio es un biomaterial bioinerte donde, una vez implantado, el tejido vivo genera una fina capa de tejido fibroso alrededor del implante la cual separa el hueso del implante. Un espesor excesivo de esta capa de tejido fibroso puede comprometer la estabilidad e integración del implante y conllevar el fracaso del tratamiento. El objetivo principal de esta tesis es el desarrollo de una nueva superficie de titanio que sea capaz de controlar e inhibir la generación de tejido fibroso en la superficie del implante. De esta manera, tratamos de mejorar la osteointegración de implantes y prótesis mediante la mejora de la respuesta celular sobre la superficie del implante. Para el control del crecimiento de tejido fibroso en la superficie se han desarrollado nuevas superficies de titanio donde se han inmovilizado dos tipos de péptidos cortos capaces de inhibir la interacción de la citoquina TGF-?, la cual incrementa la producción de este tipo de tejido por parte de las células fibroblásticas. Estos péptidos, llamados P17 y P144 han sido desarrollados por el equipo de nuestro colaborador el Dr. Francisco Borrás-Cuesta, en el Centro de Investigación Médica aplicada de la Universidad de Navarra. Esta tesis está dividida en 6 capítulos donde se describe el desarrollo y caracterización de las superficies de titanio funcionalizadas con péptidos inhibidores del TGF-?: • Capítulo 1: Introducción a los ámbitos y conceptos importantes de la tesis. • Capítulo 2: Diseño y desarrollo de un método de inmovilización covalente de péptidos cortos sobre superficies de titanio. • Capítulo 3: Estudio de los factores que intervienen en la inmovilización de péptidos cortos sobre las superficies de titanio. • Capítulo 4: Caracterización físico-química de las superficies de titanio funcionalizadas con el péptido P17. • Capítulo 5: Caracterización físico-química de las superficies de titanio funcionalizadas con el péptido P144. • Capítulo 6: Respuesta biológica in vitro de las superficies de titanio funcionalizadas con P17 y P144. Los resultados más relevantes en el desarrollo de esta tesis han sido: • El desarrollo de un nuevo método de inmovilización covalente de péptidos sobre superficies de titanio obteniendo una alta densidad de péptido en superficie con una buena estabilidad mecánica y termoquímica. • La consecución de superficies de titanio capaces de inhibir la acción del TGF-?. • Las nuevas superficies desarrolladas son capaces de incrementar la diferenciación osteoblástica y así, potencialmente mejorando la capacidad de osteointegración de implantes y prótesis de titanio. Este trabajo de investigación contribuye a aumentar el conocimiento sobre la inmovilización covalente y no covalente de péptidos cortos en superficies de titanio. También contribuye en aumentar el conocimiento de la acción e inhibición del TGF-? en células fibroblasticas y osteoblásticas, estas últimas sembradas sobre superficies de titanio. El material desarrollado es un excelente candidato para su aplicación en implantología y traumatología ósea.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno