Ayuda
Ir al contenido

Dialnet


Contribución al estudio de conectivos en un espacio de funciones de distribución

  • Autores: Mónica Sánchez Soler
  • Directores de la Tesis: Claudi Alsina Català (dir. tes.), María Teresa Riera Madurell (dir. tes.)
  • Lectura: En la Universidad Politécnica de Madrid ( España ) en 1987
  • Idioma: español
  • Tribunal Calificador de la Tesis: Nadal Baile Nicolau (presid.), Juan Pazos Sierra (secret.), Francesc Esteva i Massaguer (voc.), Luis María Laita de la Rica (voc.), José Luis Maté Hernández (voc.)
  • Materias:
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • LA TESIS SE DEDICA AL ESTUDIO DETALLADO DE OPERACIONES EN EL ESPACIO DE FUNCIONES DE DISTRIBUCION DE PROBABILIDAD A+, SE PROPONEN ESTAS OPERACIONES COMO CONECTIVOS PARA UNA LOGICA CON VALORACIONES PROBABILISTICAS Y SE DESARROLLA UN ESTUDIO DE LA ARITMETICA BASICA DE LAS RELACIONES ENTRE DICHOS CONECTIVOS.

      SE INTRODUCEN LAS TERNAS DE DE MORGAN EN A+ AXIOMATIZANDO Y ESTUDIANDO PREVIAMENTE LOS CONCEPTOS DE NEGACION FUERTE DE A+ Y DE COFUNCION TRIANGULAR. SE DAN CARACTERIZACIONES DE TERNAS DE DE MORGAN EN A+ Y SE RESUELVE LA GENERALIZACION DE LA ECUACION FUNCIONAL DE FRANK EN ESTE CONTEXTO.

      SE ESTUDIAN CIERTAS OPERACIONES DE A+ OBTENIDAS A PARTIR DE MEDIAS CUASI-ARITMETICAS DEL INTERVALO UNIDAD Y SE ANALIZA EN QUE CONDICIONES CONSERVAN LAS PROPIEDADES USUALES DE DICHOS CONECTIVOS (IDEMPOTENCIA BISIMETRIA ...).

      EN LA ULTIMA PARTE DE LA TESIS SE INTRODUCEN Y ESTUDIAN LAS FUNCIONES DE AGREGACION EN A+ CONCEPTO QUE ENGLOBA PARTE DE LOS CONECTIVOS ANTERIORMENTE ESTUDIADOS Y PERMITE OBTENER NUEVOS TIPOS DE OPERACIONES BINARIAS DE A+. POR ULTIMO SE ESTUDIA CUANDO UNA MEDIA CUASI-ARITMETICA PUNTUAL DE A+ ES UNA FUNCION DE AGREGACION ESTUDIO QUE NOS LLEVA A LA RESOLUCION DE UN SISTEMA DE ECUACIONES FUNCIONALES QUE FUE CONSIDERADO POR PRIMERA VEZ POR DE RHAM EN 1956 Y ESTUDIADO POR MUCHOS AUTORES EN DIVERSOS CAMPOS.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno