Las propiedades de conmutación de óxidos de metales de transición y vidrios calcogenuros en estructuras metal-aislante -metal se estudiaron en los años sesenta y setenta. Hoy en día, estas propiedades y materiales se están estudiando con renovado interés debido a que son muy prometedores tanto para dispositivos lógicos como para aplicaciones de memoria. Las memorias de cambio de fase (PCRAM) basadas en transiciones cristalino /amorfo inducidas por calentamiento Joule son ya una realidad comercial. Sin embargo, estos dispositivos sufren de corriente demasiado alta durante la programación y consumo de potencia elevado. En este sentido, la conmutación resistiva (RS) en óxidos de metales de transición se está investigado intensamente debido a su potencial como Memorias Resistivas de Acceso Aleatorio (RRAM). Estas estructuras son ideales para las matrices de memoria de tipo “crossbar” que actualmente están consideradas como los más prometedoras para la implementación del concepto “storage class memroy”. En particular, se considera que estas memorias podrían reemplazar en un futuro a las memorias flash NAND y también eventualmente a las memorias RAM estáticas (SRAM) y dinámicas (DRAM), reduciendo así la jerarquía de memoria en los sistemas de computación. Por otro lado, óxidos electroformados han permitido la primera implementación del dispositivo de estado sólido conocido como memristor , un dispositivo teóricamente propuesto por Chua en 1971 . Este dispositivo es muy prometedor para aplicaciones de lógica reconfigurable y para la aplicación de arquitecturas de computación neuromórficas . Hay tres factores importantes que en la actualidad impiden la transferencia de los resultados de RS a la aplicación industrial , (i) la falta de una adecuada comprensión de la física de los mecanismos físicos de RS, y (ii) la variación estadística de los parámetros de set y reset entre ciclos de operación y de dispositivo a dispositivo, así como (iii) los problemas de fiabilidad , tales como la baja retención a alta temperatura . Esta tesis se centra en dos cuestiones fundamentales: (1) estudiar la física de los mecanismos de conmutación y de conducción del filamento conductor (CF) y (2) la exploración y modelado de las estadísticas de conmutación. La tesis se ha dividido en tres partes principales. La primera de ellas está dedicada a poner de manifiesto la naturaleza del CF , sus propiedades de conducción y de los mecanismos que controlan las transiciones de set y reset. La segunda parte está dedicada al estudio de la variación estadística de los parámetros en los dispositivos RRAM. Partiendo de una implementación basada en celdas del modelo percolativo de la ruptura dieléctrica, se ha propuesto un modelo analítico para las estadísticas de SET y RESET en dispositivos RRAM. La tercera parte está dedicada a poner de manifiesto de tres estados RS efectos para los dispositivos basados en RRAM HfO2 usando tres métodos diferentes de estrés eléctrico, el estrés con rampa de tensión (RVS), estreses sucesivos de rampa de tensión (SVS) , y el estrés a tensión constante (CVS) . En la primera parte , el modelo de Quantum Punto de Contacto (QPC) se ha aplicado al estudio de las propiedades de conducción del CF en los dispositivos RRAM basados en HfO2, tanto en el estado de alta resistencia (HRS) como en el de baja resistencia (LRS). Sobre la base del método de transmisión de Landauer para la conducción a lo largo de constricciones microscópicas estrechas , se ha desarrollada la fórmula del modelo QPC para el caso de múltiples filamentos conductores. Esta ecuación es aplicable tanto al HRS como al LRS, tal como hemos demostrado en dispositivos RRAM basados en HfO2. Posteriormente , el modelo QPC ha sido reformulado en un enfoque multi- escala basado en el acoplamiento a los resultados de simulaciones ab-initio de caminos de vacantes de oxígeno. De esta manera, el modelo se ha simplificado para tener sólo tres parámetros y se ha explicitado una conexión directa con la geometría del CF. Mediante el ajuste de las características I-V experimentales tanto en HRS y los LRS hemos obtenido información indirecta sobre la estructura microscópica del CF en estructuras Pt/Ti/HfO2/Pt y Pt/HfO2/Pt. Para la estructura Pt/HfO2/Pt en modo RS no polar, el CF es simétrico y muy probablemente presenta su mayor constricción en el centro de la capa de óxido. Durante la transición de reset, el CF se estrecha progresivamente hast llegar a un límite de sólo uno o muy pocos caminos de vacantes de oxígeno que conectan los electrodos . Esta etapa es seguida por la apertura de un gap en el CF. La longitud de dicho gap determina la conductancia en el HRS y la puede cambiar en varios órdenes de magnitud. Para la estructura Pt/Ti/HfO2/Pt, el CF es altamente asimétrico, con la parte constrictiva más estrecha cerca de la interfaz entre el HfO2 y el Pt. Se cree que la película de Ti actúa como una capa de extracción de oxígeno y sirve para introducir una alta densidad de vacantes de oxígeno en el HfO2. En el caso de RS bipolar, se ha encontrado un gap en el CF en los dos estados (de mayor dimensión en el HRS) y también se ha puesto de manifiesto una reducción del área efectiva del CF. Para el modo RS unipolar, el número de caminos conductores en el HRS es mucho menor que en el modeo bipolar, aunque el resto de propiedades se mantiene muy parecida. En la segunda parte , hemos partido del modelo percolativo de ruptura basado en celdas como base para proponer un marco general para las estadísticas de conmutación resistiva filamentar. Dicho modelo consta de dos elementos principales: (i) un modelo geométrico basado en celdas para describir la dependencia de la distribución de la RS con la generación de defectos en el CF ; y (ii) un modelo determinista para la dinámica reset y set para describir la relación de la generación de defectos con variables mesurables tales como tensiones y corrientes. El análisis de resultados experimentales obtenidos en muestras Pt/HfO2/Pt han confirmado la validez del modelo estadístico tanto para el set como para el reset. En la tercera parte de la tesis, la transición de reset de las estructuras RRAM basadas en HfO2 se ha investigado en detalle, poniendo especial énfasis en revelar efectos de conmutación resistiva de tres estados. La existencia de un estado intermedio estable se ha puesto de manifiesto experimentalmente. Se ha demostrado que, en dicho estado, el CF se comporta como un cable cuántico (QW). Para ello se han utilizado tres métodos eléctricos diferentes, RVS , SVS y CVS . Este estado de QW se caracteriza por tener la conductancia del orden de la conductancia cuántica G0 ~ 2e2/h. Los tres estados de resistencia que se han puesto de manifiesto son: (1) el LRS, en el que el CF es muy ancho y presenta propiedades de conducción metálicas clásicas; (2) un estado de reset parcial en la que el CF se comporta como un QW y que puede ser tan estrecho como un camino conductor de un solo defecto; y (3) el HRS, en el que un gap se ha abierto en el CF. Un único QW canal de transporte con una conductancia del orden de G0 representa la frontera natural entre el LRS y el HRS. Por último, para mostrar el impacto del estado intermedio sobre las estadísticas de tensión de set y reset, se ha diseñado un test a dos fases, consistentes en una rampa de tensión precedida por un estrés a tensión constante que sitúa un buen número de dispositivos en el estado QW.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados