Ayuda
Ir al contenido

Dialnet


On the outer synchronization of complex dynamical networks

  • Autores: Mohammadmostafa Asheghan
  • Directores de la Tesis: Joaquín Miguez Arenas (dir. tes.)
  • Lectura: En la Universidad Carlos III de Madrid ( España ) en 2014
  • Idioma: inglés
  • Tribunal Calificador de la Tesis: Ángel María Bravo Santos (presid.), David Luengo García (secret.), Irene Sendiña Nadal (voc.)
  • Enlaces
  • Resumen
    • Complex network models have become a major tool in the modeling and analysis of many physical, biological and social phenomena. A complex network exhibits behaviors which emerge as a consequence of interactions between its constituent elements, that is, remarkably, not the same as individual components. One particular topic that has attracted the researchers' attention is the analysis of how synchronization occurs in this class of models, with the expectation of gaining new insights of the interactions taking place in real-world complex systems. Most of the work in the literature so far has been focused on the synchronization of a collection of interconnected nodes (forming one single network), where each node is a dynamical system governed by a set of nonlinear differential equations, possibly displaying chaotic dynamics. In this thesis, we study an extended version of this problem. In particular, we consider a setup consisting of two complex networks which are coupled unidirectionally, in such a way that a set of signals from the master network are injected into the response network, and then investigate how synchronization is attained. Our analysis is fairly general. We impose few conditions on the network structure and do not assume that the nodes in a single network are synchronized. This work can be divided into two main parts; outer synchronization in fractional-order networks, and outer synchronization in ordinary networks. In both cases the system parameters are perturbed by bounded, time varying and unknown perturbations. The synchronizer feedback matrix is possibly perturbed with the same type of perturbations as well. In both cases, of fractional-order and ordinary networks, we build up several theorems that ensure the attainment of synchronization in various scenarios, including, e.g., cases in which the coupling matrix of the networks is non-diffusive (hence we can avoid this assumption, which is almost invariably made in the literature). In all the cases of interest, we show that the scheme for coupling the networks is very simple, as it reduces to the computation of a single gain matrix whose dimension is independent of the number of network nodes. The structure of the designed synchronizer is also very simple, making it convenient for real-world applications. Although all of the proposed schemes are assessed analytically, numerical results (obtained by computer simulations) are also provided to illustrate the proposed methods. ---------------------------------------


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno