Ayuda
Ir al contenido

Dialnet


Integration of thin film based micro solid oxide fuel cells in silicon technology

  • Autores: Iñigo Garbayo Senosiain
  • Directores de la Tesis: Alberto Tarancón Rubio (dir. tes.), Francisca Peiró Martínez (dir. tes.), Neus Sabatè Vizcarra (dir. tes.)
  • Lectura: En la Universitat de Barcelona ( España ) en 2013
  • Idioma: inglés
  • Tribunal Calificador de la Tesis: José Santiso López (presid.), Albert Romano Rodríguez (secret.), Vincenzo Esposito Vinzi (voc.)
  • Materias:
  • Enlaces
  • Resumen
    • En las últimas décadas, ha habido una gran proliferación de aparatos portátiles. Entre ellos, cabe destacar los aparatos destinados a electrónica de consumo, como por ejemplo teléfonos móviles, reproductores de música, libros electrónicos, etc, los cuales están actualmente muy extendidos. De cara a proporcionar a estos aparatos con suficiente autonomía, se ha de integrar una fuente de alimentación en el mismo dispositivo. Esto urge a buscar posibles fuentes de alimentación con capacidad de integración, y que a su vez satisfagan los requerimientos básicos de alta densidad de potencia, gran tiempo de vida y bajo coste. Hasta ahora, la principal fuente de alimentación utilizada en este tipo de dispositivos ha sido las baterías. Sin embargo, conforme aumentan las funcionalidades, la necesidad de mayor capacidad de suministro (o almacenamiento) energético aumenta. Es más, justo ahora entrando en la cuarta generación (4G) de la electrónica de consumo, diversos estudios sugieren que las baterías, ya optimizadas, probablemente están alcanzando su límite en densidad energética, con lo que no podrían ya considerarse más para alimentar de manera viable los dispositivos más avanzados. En este sentido, en los últimos años muchos grupos de investigación han puesto su atención en el desarrollo de alternativas viables que puedan mejorar las prestaciones de las baterías como fuente de alimentación de dispositivos de altas prestaciones que trabajen en el régimen de baja potencia (1-20W). Debido a su alto tiempo de vida, alta densidad energética V capacidad de integración, probablemente la alternativa más prometedora es el desarrollo de micro pilas de combustible. En particular, entre los diferentes tipos, las micro pilas de combustible de óxido sólido (micro SOFC, de sus siglas en inglés), presentan los mayores valores de densidad energética específica (por unidad de masa y/o volumen), mayormente debido a su alta temperatura de operación y la consecuente capacidad de operar directamente con combustibles hidrocarburos. EI diseño de micro SOFC más extendido está basado en la fabricación de membranas auto soportadas, las cuales integran ya todas las partes funcionales de la pila, es decir, un electrolito fino cubierto por un ánodo y un cátodo (uno a cada lado). Estas membranas, de grosor muy fino (menos de 1 ¿m), normalmente se encuentran soportadas en plataformas de silicio micro mecanizadas, de manera que se facilita un fácil acceso al combustible directamente a ambos lados de la membrana, a la vez que se proporciona robustez al sistema. EI uso de silicio como material de soporte es muy conveniente, ya que es el material más utilizado en micro fabricación, por lo que existe una amplia y altamente desarrollada serie de técnicas para su micro mecanizado. Esta tesis engloba el diseño, la fabricación y la caracterización de micro pilas de combustible de óxido sólido basadas en capas delgadas, e integradas en tecnología de silicio. EI desarrollo de las micro SOFC se ha llevado a cabo de tres formas diferentes: (i.) presentando nuevos diseños para la optimización de las membranas auto soportadas, (ii.) fabricando electrolitos en capa delgada estables termo-mecánicamente y (iii.) sugiriendo e implementando en el dispositivo final nuevos materiales de electrodo en capa delgada más efectivos y viables que los actuales. En primer lugar, se fabricaron dos diseños de membrana diferentes, usando tecnología de micro fabricación de silicio. En el primero de los diseños, se fabricaron membranas cuadradas básicas. En este caso, el trabajo más importante fue el de la adaptación del proceso de fabricación al flujo de fabricación de la Sala Blanca del IMB-CNM (CSIC). Más adelante, se desarrolló un nuevo diseño de membrana de gran superficie, basado en el uso de mallas de nervios de silicio dopado como soporte robusto. Así, se consiguieron fabricar membranas auto soportadas con un área total de hasta 30 veces mayor que las conseguidas en el diseño básico anterior. Para el electrolito, se usó zirconia estabilizada con ytria (YSZ, de sus siglas en inglés), el material estado del arte en SOFC de gran volumen. Se fabricaron membranas auto soportadas de YSZ con gran reproducibilidad, obteniendo capas delgadas densas, cristalinas y de grosor homogéneo. Estas características son básicas para un buen funcionamiento del electrolito, ya que así se evitan posibles cortocircuitos entre los dos electrodos y/o fugas de gas. Además, se realizó un estudio exhaustivo de la estabilidad termo-mecánica de las membranas de YSZ, ya que las temperaturas de operación de la pila son de varios centenares de ºC. En particular, se prestó atención especial a la evolución de los estreses en función de las condiciones de fabricación de la capa de YSZ, para así evitar posibles fallos en los continuos ciclados térmicos. Finalmente, se realizó un estudio de las propiedades electroquímicas de las membranas de YSZ fabricadas. Normalmente, se establece un valor de resistencia específica por área de 0.15 Ocm2 para cada una de las capas funcionales de las pilas. En este caso, este valor objetivo se obtuvo a temperaturas de 400°C en membranas de YSZ de 250 nm de grosor. De esta forma, se comprobó que estas capas pueden funcionar perfectamente como electrolito en todo el rango de operación de las micro SOFC, que normalmente se establece en 400-800°C. A continuación, se probaron diversos materiales como electrodos en capa delgada, para su implementación en micro SOFC. En primer lugar, aunque éstos han sido usados frecuentemente por otros autores en estudios previos de micro SOFC, se comprobó que los electrodos metálicos en capa delgada (capas de Pt poroso) son inestables a las temperaturas de operación de las micro SOFC. Por lo tanto, esta hizo que se probaran materiales alternativos, bien para el ánodo o para el cátodo. En particular, para el cátodo se fabricaron capas delgadas porosas de La0.6Sr0.4CoO3-¿ (LSC) y se integraron en membranas auto soportadas de YSZ (electrolito). La conductividad electrónica que se midió en estas capas es adecuada, y no se observó degradación en todo el rango de temperaturas de operación. Así mismo, se comprobó la estabilidad termo mecánica del sistema fabricando membranas simétricas de LSC/YSZ/LSC y realizándoles ciclados térmicos hasta los 700°C. Por último, se midieron las propiedades electroquímicas de las bi-capas cátodo/electrolito, obteniendo los valores objetivo de resistencia específica por área (0.30 ¿cm2) a temperaturas de 700°C. Para el ánodo, se fabricaron capas delgadas porosas de un cermet de Pt y Ce0.8Gd0.2O1.9-¿ (Pt-CGO). Se aseguró una buena inter-conexión entre el Pt y el CGO mediante tratamientos térmicos. Las propiedades electroquímicas se midieron nuevamente fabricando membranas simétricas, esta vez Pt- CGO/YSZ/CGO-Pt. Así mismo, el objetivo de 0.30 ¿cm2 se obtuvo de nuevo a temperaturas alrededor de 700°C. Además, en esta tesis se lIevó a cabo la fabricación de colectores de corriente térmicamente estables y a su vez compatibles con la configuración básica de una micro SOFC (membranas auto soportadas). Para ello, se usó un proceso de litografía no convencional, lIamado "nanosphere lithography". De esta forma se fabricaron mallas de Pt denso perfectamente ordenadas en ambos lados de las membranas. La estabilidad térmica y la durabilidad en el tiempo de estas mallas fue igualmente probada mediante medidas en condiciones de trabajo reales de micro SOFC. Por último, en este trabajo se presentó una micro SOFC completamente basada en cerámicas por primera vez. Las tres capas funcionales de la pila, es decir, tanto el cátodo, como el electrolito y el ánodo, se fabricaron basándose en los estudios previos de cada material. Así, se fabricaron membranas auto soportadas siguiendo la configuración LSC/YSZ/CGO-Pt. Además, se implementaron mallas de Pt en ambos lados para asegurar una buena colección de corriente. La estabilidad termo mecánica de la membrana se midió hasta 750°C, extendiendo así el rango de temperaturas de operación reportado anteriormente en dispositivos finales de micro SOFC y en consecuencia permitiendo el uso de electrodos cerámicos. Se midieron valores de densidad de potencia de 100 mW/cm2 a 750°C, usando H2 como combustible y aire sintético como oxidante. Estos resultados representan los primeros valores de potencia presentados en micro SOFC basadas en cerámicas, abriendo así la posibilidad de desarrollar una segunda generación de micro SOFC más viables térmicamente.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno