Manuel Andrés Díaz Loaiza
Floods and Drought are some of the most catastrophic natural disasters for humanity, averaging 1 to 5 billion dollar of annually damage for flood events and 6 to 8 billion dollars respectively for drought events. To avoid this phenomena risk management science has grown in the last years and allows us to assess the risk and the possible benefits if some specific measures are implemented (e.g. mitigation / adaptation measures). A methodology for Non-Structural Measures (NSM) implementation in risk assessment has been developed for flood event management. Likewise, an uncertainty analysis has been done in order to identify the variation of the possible results in the risk assessment. An analysis has been done based on the Expected Annual Damage (EAD) to determine the optimal return period of design of a structural measure. A new indicator has been proposed based on this analysis: The Optimal Expected Annual Damage indicator (OEAD). In the present document the results of pluvial flood risk assessment are described. These results include structural and non-structural measures based on a developed methodology for Arenys de Munt basin, which belongs to the region of Catalonia in Spain. To include non-structural measures in risk assessment, mitigation coefficients where built in the methodology, and are described in the methodology. Also, steps for the optimization of their possible implementation are defined. This research shows that potential economic losses are decreasing with the construction of structural measures from approximately 6.6 M€ to 3 M€ (box culvert of €14Million), and in combination with the implementation of non-structural measures this could even decrease to 0.7 M€ if the non-structural measures are implemented (for 500 year return period event). Related potential casualties results decrease from approx. 11 casualties to 8 and even as low as 2 casualties respectively if non-structural measures are implemented (for 500 year return period). This, demonstrate that non-structural measures are a way to follow in the flood risk mitigation. For drought events, a new methodology has been developed in order to relate quantitative potential economic losses for rainfed crops with "Meteorological Drought". In the same, a method for the hazard (through the Palmer index) and vulnerability assessment was developed. The susceptibility of a particular crop due to a drought event was linked with a classification of the phenological stages according two seasons: the sowing and harvesting season. The case study was focus on the Llobregat basin, in which both, hydrometeorological and crop statistics data series were available. Results illustrate that the Llobregat basin has suffered at least 2 important periods of drought (2000/2001 and 2005/2006) during the length of the considered 16 year crop production record statistics. These periods of drought caused potential economic losses of approximately 40.13 M€ and 55.84 M€ in the geopolitical subdivision called "Comarcas" of the Llobregat basin. The related methodology, demonstrates coherence in the detection of "important" drought events, and in the quantification of individual potential losses per crop type, which shows that crops, like olives (classified in category woody crop type) are more resistant to drought than vegetables (tomato, lettuce chard etc.). Finally, in addition to the presented methodology the potential losses of crop efficiency curves are proposed, as indicators for agricultural drought risk assessment.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados