Ayuda
Ir al contenido

Dialnet


On the development of decision-making systems based on fuzzy models to assess water quality in rivers

  • Autores: William Ocampo Duque
  • Directores de la Tesis: Marta Schuhmacher Ansuategui (dir. tes.)
  • Lectura: En la Universitat Rovira i Virgili ( España ) en 2008
  • Idioma: inglés
  • ISBN: 9788469197431
  • Tribunal Calificador de la Tesis: José Luis Domingo Roig (presid.), Francesc Castells Piqué (secret.), Ethel Eljarrat (voc.), Jordi Sierra Llopart (voc.), Antoni Ginebreda Martí (voc.)
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: TDX
  • Resumen
    • There are many situations where a linguistic description of complex phenomena allows better assessments. It is well known that the assessment of water quality continues depending heavily upon subjective judgments and interpretation, despite the huge datasets available nowadays. In that sense, the aim of this study has been to introduce intelligent linguistic operations to analyze databases, and produce self interpretable water quality indicators, which tolerate both imprecision and linguistic uncertainty. Such imprecision typically reflects the ambiguity of human thinking when perceptions need to be expressed. Environmental management concepts such as: "water quality", "level of risk", or "ecological status" are ideally dealt with linguistic variables. In the present Thesis, the flexibility of computing with words offered by fuzzy logic has been considered in these management issues. Firstly, a multipurpose hierarchical water quality index has been designed with fuzzy reasoning. It integrates a wide set of indicators including: organic pollution, nutrients, pathogens, physicochemical macro-variables, and priority micro-contaminants. Likewise, the relative importance of the water quality indicators has been dealt with the analytic hierarchy process, a decision-aiding method. Secondly, a methodology based on a hybrid approach that combines fuzzy inference systems and artificial neural networks has been used to classify ecological status in surface waters according to the Water Framework Directive. This methodology has allowed dealing efficiently with the non-linearity and subjective nature of variables involved in this classification problem. The complexity of inference systems, the appropriate choice of linguistic rules, and the influence of the functions that transform numerical variables into linguistic variables have been studied. Thirdly, a concurrent neuro-fuzzy model based on screening ecological risk assessment has been developed. It has considered the presence of hazardous substances in rivers, and incorporates an innovative ranking and scoring system, based on a self-organizing map, to account for the likely ecological hazards posed by the presence of chemical substances in freshwater ecosystems. Hazard factors are combined with environmental concentrations within fuzzy inference systems to compute ecological risk potentials under linguistic uncertainty. The estimation of ecological risk potentials allows identifying those substances requiring stricter controls and further rigorous risk assessment. Likewise, the aggregation of ecological risk potentials, by means of empirical cumulative distribution functions, has allowed estimating changes in water quality over time. The neuro-fuzzy approach has been validated by comparison with biological monitoring. Finally, a hierarchical fuzzy inference system to deal with sediment based ecological risk assessment has been designed. The study was centered in sediments, since they produce complementary findings to water quality analysis, especially when temporal trends are required. Results from chemical and eco-toxicological analyses have been used as inputs to two parallel inference systems which assess levels of contamination and toxicity, respectively. Results from both inference engines are then treated in a third inference engine which provides a final risk characterization, where the risk is provided in linguistic terms, with their respective degrees of certitude. Inputs to the risk system have been the levels of potentially toxic substances, mainly metals and chlorinated organic compounds, and the toxicity measured with a screening test which uses the photo-luminescent bacteria Vibrio fischeri. The Ebro river basin has been selected as case study, although the methodologies here explained can easily be applied to other rivers. In conclusion, this study has broadly demonstrated that the design of water quality indexes, based on fuzzy logic, emerges as suitable and alternative tool to support decision makers involved in effective sustainable river basin management plans.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno