Uno de los grandes retos de la HPC (High Performance Computing) consiste en optimizar el subsistema de Entrada/Salida, (E/S), o I/O (Input/Output). Ken Batcher resume este hecho en la siguiente frase: "Un supercomputador es un dispositivo que convierte los problemas limitados por la potencia de cálculo en problemas limitados por la E/S" ("A Supercomputer is a device for turning compute-bound problems into I/O-bound problems"). En otras palabras, el cuello de botella ya no reside tanto en el procesamiento de los datos como en la disponibilidad de los mismos. Además, este problema se exacerbará con la llegada del Exascale y la popularización de las aplicaciones Big Data. En este contexto, esta tesis contribuye a mejorar el rendimiento y la facilidad de uso del subsistema de E/S de los sistemas de supercomputación. Principalmente se proponen dos contribuciones al respecto: i) una interfaz de E/S desarrollada para el lenguaje Chapel que mejora la productividad del programador a la hora de codificar las operaciones de E/S; y ii) una implementación optimizada del almacenamiento de datos de secuencias genéticas. Con más detalle, la primera contribución estudia y analiza distintas optimizaciones de la E/S en Chapel, al tiempo que provee a los usuarios de una interfaz simple para el acceso paralelo y distribuido a los datos contenidos en ficheros. Por tanto, contribuimos tanto a aumentar la productividad de los desarrolladores, como a que la implementación sea lo más óptima posible. La segunda contribución también se enmarca dentro de los problemas de E/S, pero en este caso se centra en mejorar el almacenamiento de los datos de secuencias genéticas, incluyendo su compresión, y en permitir un uso eficiente de esos datos por parte de las aplicaciones existentes, permitiendo una recuperación eficiente tanto de forma secuencial como aleatoria. Adicionalmente, proponemos una implementación paralela basada en Chapel.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados