Ayuda
Ir al contenido

Dialnet


Resumen de Growth and optical characterization of strain-engineered semiconductor nanostructures

Alessandro Bernardi

  • En este trabajo hemos investigado distintas posibilidades para aprovechar las tensiones almacenadas en los materiales nanoestructurados para obtener estructuras 3D auto-organizadas. En particular hemos estudiado el crecimiento epitaxial de puntos cuánticos auto-organizados de Ge sobre Si depositando una submonocapa de carbono antes del crecimiento de las islas de Ge. Empleando la microscopía de fuerza atómica combinada con difracción RHEED y técnicas ópticas como la dispersión Raman y la elipsometría, hemos llevado a cabo un estudio sistemático de la influencia de la interdifusión de Si y de la composición de la capa de mojado en la densidad y la morfología de las islas. Los resultados aportan evidencia experimental de un mecanismo de crecimiento cinéticamente limitado donde la movilidad de los adátomos de Ge se ve afectada por la interacción química entre C, Si, y Ge. Como resultado, presentamos un protocolo de crecimiento en dos etapas para manipular la topografía de las islas (densidad, forma y tamaño), útil para posibles aplicaciones en optoelectrónica. Hemos investigado el fenómeno de relajación de las tensiones elásticas cuando recubrimos las islas, un proceso necesario para la ingeniería de dispositivos que constan de multicapas de puntos cuánticos. También hemos analizado la evolución de nanoestructuras de Ge preparadas combinando el uso de nanoplantillas (nanostencils) con la técnica PLD, una estrategia que tiene mucho potencial para producir patrones de nanoestructuras semiconductoras para optoelectrónica. Además del crecimiento de islas 3D, hemos aplicado la ingeniería de capas tensadas para fabricar microtubos que se enrollan espontáneamente a partir de heteroestructuras tensadas de semiconductor. Mediante la espectroscopía Raman con resolución microscópica hemos conseguido medir las tensiones residuales, que se manifiestan en un cambio de la frecuencia de los fonones, comparando la señal colectada en la pared del tubo con el valor de referencia del material sin tensiones. Hemos desarrollado un modelo elástico para describir dicho cambio de frecuencia, lo que nos permite caracterizar la distribución de tensiones en el microtubo. Los resultados demuestran que la espectroscopía Raman es una potente técnica de diagnóstico del estado de tensión en dispositivos tipo MEMS. Hemos aplicado la tecnología de fabricación de microtubos enrollados para obtener un sensor bioquímico “lab-in-a-tube” óptico, donde se emplea la luz como sonda. Hemos fabricado microtubos de Si/SiOx integrados en un chip de Silicio y hemos evaluado sus propiedades como sensor refractométrico. Introduciendo una solución azucarada en el microtubo, se produce un cambio en el índice de refracción, que se manifiesta en un desplazamiento de las frecuencias de los modos ópticos de “whispering gallery”. Este prototipo demuestra que la integración de microtubos enrollados es un proceso de fabricación con mucho potencial para diseñar canales optofluídicos en dispositivos “lab-on-a-chip”.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus