Ayuda
Ir al contenido

Dialnet


Wave propagation problems with aeroacoustic applications

  • Autores: Héctor Gabriel Espinoza Román
  • Directores de la Tesis: Santiago I. Badía Rodríguez (dir. tes.), Ramón Codina Rovira (dir. tes.)
  • Lectura: En la Universitat Politècnica de Catalunya (UPC) ( España ) en 2015
  • Idioma: inglés
  • Tribunal Calificador de la Tesis: Antonio Rodríguez Ferran (presid.), Johan Jansson (secret.), Francesca Gardini (voc.)
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: TDX
  • Resumen
    • The present work is a compilation of the research produced in the field of wave propagation modeling. It contains in-depth analysis of stability, convergence, dispersion and dissipation of spatial, temporal and spatial-temporal discretization schemes. Space discretization is done using stabilized finite element methods denoted with the acronyms ASGS and OSS. Time discretization is done using finite difference methods including backward Euler (BE), 2nd order backward differentiation formula (BDF2) and Crank-Nicolson (CN). Firstly, we propose two stabilized finite element methods for different functional frameworks of the wave equation in mixed form. These stabilized finite element methods are stable for any pair of interpolation spaces of the unknowns. The variational forms corresponding to different functional settings are treated in an unified manner through the introduction of length scales related to the unknowns. Stability and convergence analysis is performed together with numerical experiments. It is shown that modifying the length scales allows one to mimic at the discrete level the different functional settings of the continuous problem and influence the stability and accuracy of the resulting methods. Then, we develop numerical approximations of the wave equation in mixed form supplemented with non-reflecting boundary conditions (NRBCs) of Sommerfeld-type on artificial boundaries for truncated domains. We consider three different variational forms for this problem, depending on the functional space for the solution, in particular, in what refers to the regularity required on artificial boundaries. Then, stabilized finite element methods that can mimic these three functional settings are described. Stability and convergence analyses of these stabilized formulations including the NRBC are presented. Additionally, numerical convergence test are evaluated for various polynomial interpolations, stabilization methods and variational forms. Finally, several benchmark problems are solved to determine the accuracy of these methods in 2D and 3D. Afterwards, we analyze time marching schemes for the wave equation in mixed form. The problem is discretized in space using stabilized finite elements. On the one hand, stability and convergence analyses of the fully discrete numerical schemes are presented. On the other hand, we use Fourier techniques (also known as von Neumann analysis) in order to analyze stability, dispersion and dissipation. Additionally, numerical convergence tests are presented for various time integration schemes, polynomial interpolations (for the spatial discretization), stabilization methods, and variational forms. Finally, a 1D example is solved to analyze the behavior of the different schemes considered. Later, we present various application examples and compare the numerical results of the different algorithms i.e. ASGS or OSS stabilization and BE, BDF2 or CN time marching schemes. Additionally, comparison with experiments is performed in some cases. Finally, conclusions are drawn including the research achievements and future work.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno