Ayuda
Ir al contenido

Dialnet


Structural, biophysical and functional characterization of Nop7-Erb1-Ytm1 complex and its implications in eukaryotic ribosome biogenesis

  • Autores: Marcin Wegrecki
  • Directores de la Tesis: Adelaida García Gimeno (dir. tes.), Jerónimo Bravo Sicilia (dir. tes.)
  • Lectura: En la Universitat Politècnica de València ( España ) en 2015
  • Idioma: inglés
  • Tribunal Calificador de la Tesis: Jesús de la Cruz Díaz (presid.), Susana Rodríguez Navarro (secret.), Carlos Fernández Tornero (voc.)
  • Programa de doctorado: Programa Oficial de Doctorado en Biotecnología
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: RiuNet
  • Resumen
    • Ribosome biogenesis is one of the most important and energy-consuming processes in the cell. However, the vast majority of the events and factors that are involved in the synthesis of ribosomal subunits are not well understood. Ribosome maturation comprises multiple steps of rRNA processing that require sequential association and dissociation of numerous assembly factors. These proteins establish a complex network of interactions that are essential for the pathway to continue. Extensive studies in Saccharomyces cerevisiae allowed to identify some of the genetic and functional correlations between the pre-ribosomal factors that could be organized into interdependent clusters or sub-complexes. A heterotrimer formed by Nop7, Erb1 and Ytm1 (PeBoW complex in mammals) is crucial for the proper formation of the 60S subunit. Depletion of any of the three proteins is inviable and certain truncations result in aberrant processing of 27SA2 rRNA thus impairing cell proliferation. Nop7 and Erb1 have been shown to bind RNA and are recruited to the pre60S before Ytm1. It is also known that the trimer has to be removed from the nascent particle in order to promote its normal maturation. Despite its relevance in the cell, the exact role of PeBoW is not clear and the interactions within the complex have been poorly characterized. In this study we carry out an extensive biochemical and structural analysis of Nop7-Erb1-Ytm1 trimer from S. cerevisiae and from a thermophilic fungus Chaetomium thermophilum. We have been able to reconstitute a stable complex in vitro that was then used in crystallographic trials. We have solved the structure of the C-terminal domain of Erb1 from yeast that folds into a seven-bladed ß-propeller. We prove that this part of the protein binds RNA in vitro, a property that might be important for its function. Moreover, in spite of previous reports suggesting that the ß-propeller domain of Erb1 would not be essential for ribosome biogenesis, we could solve the crystal structure of Ytm1 bound to the carboxy-terminal portion of Erb1 from C. thermophilum. That finding led us to redefine the macromolecular interactions that hold the complex together. First, we have verified that the N-terminal region of Nop7 interacts with Erb1. Furthermore, we have shown that a good affinity binding takes place in vitro between WD40 domain of Ytm1 and the ß-propeller of Erb1. Upon careful analysis of the interface involved in dimer formation we have designed a mutant of Erb1 that exhibits weaker association with Ytm1. We confirm our structural and biophysical data using S. cerevisiae. We prove that a point mutation that decreases the affinity between propellers of Erb1 and Ytm1 negatively affects growth in yeast because it interferes with 60S production. We show that a very conserved interface of protein-protein interaction could be targeted in order to hinder cell proliferation.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno