Ayuda
Ir al contenido

Dialnet


Valor de la saturación regional cerebral de oxígeno como marcador del estado hemodinámico en el post-operatorio de cardiopatías congénitas en pacientes pediátricos

  • Autores: A. Aldemira-Liz
  • Directores de la Tesis: M. Loscertales Abril (dir. tes.), Juan Antonio García Hernández (codir. tes.), Ignacio Obando (tut. tes.)
  • Lectura: En la Universidad de Sevilla ( España ) en 2014
  • Idioma: español
  • Tribunal Calificador de la Tesis: Francisco Murillo-Cabezas (presid.), Esther Ocete Hita (secret.), Aurelio Cayuela Domínguez (voc.), Elia Sánchez Valderrabanos (voc.), Ignacio Ibarra de la Rosa (voc.)
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: TESEO
  • Resumen
    • La saturación cerebral de oxígeno (rSO2c) es una medida del estado de perfusión y oxigenación de los tejidos, y su determinación se realiza mediante la espectrometría cercana al infrarrojo (NIRS). Esta técnica, basada en la relativa transparencia de los tejidos biológicos a la luz cercana al infrarrojo, proporciona una medición de la oxigenación tisular mediante la determinación cuantitativa del color de la hemoglobina en sangre. Así, el sistema NIRS valora de forma no invasiva, constante y a tiempo real la circulación tisular, reflejando tanto la entrega como el consumo de oxígeno en el tejido cerebral.

      El objetivo ha sido analizar la relación entre la rSO2c y una serie de parámetros hemodinámicos, respiratorios e inflamatorios.

      Entre Octubre de 2011 y Julio de 2012, se incluyeron 43 niños intervenidos de cirugía cardiovascular en un estudio prospectivo, observacional y descriptivo. Se midió la rSO2c y la tensión arterial media (TAM), y se realizaron gasometrías en sangre arterial y venosa. Se determinó la saturación arterial (SaO2), la saturación venosa (SvO2), la presión arterial de oxígeno (paO2) y el lactato; y se calculó la paO2/FiO2, el índice de oxigenación (IO) y la extracción de oxígeno (ETO2). También se analizaron los valores de glucemia y troponinas como marcadores inflamatorios y de daño miocárdico. Se analizaron estas mediciones para determinar si existían correlaciones significativas entre la rSO2c y los otros parámetros.

      Las medias de edad y peso fueron de 27.3 meses y 9.2 Kg. Se encontró una correlación positiva de la rSO2c con la SvO2 (r = 0.73, p<0.01) y con la TAM (r = 0.59, p<0.01); y una correlación negativa con la ETO2 (r =- 0.7, p<0.01). El análisis de concordancia estableció un índice Kappa aceptable (> 0.5) entre la rSO2c y la SvO2, y entre la rSO2c y la ETO2 (p<0.001). En el análisis de las curvas COR entre la rSO2c y las variables TAM, SvO2 y ETO2, se obtuvieron áreas bajo la curva superiores a 0.7, correspondientes a test buenos o muy buenos (p<0.005). Se obtuvo una correlación negativa moderada con los niveles de glucemia y los de troponinas (r= -0.4_-0.5, p<0.01). La rSO2c no se correlacionó con las variables respiratorias analizadas.

      La rSO2c puede predecir con bastante fiabilidad el valor de parámetros hemodinámicos indirectos como la ETO2 y la SvO2, además de detectar un cambio agudo tanto en estas variables como en la TAM. Por tanto, la rSO2c puede ser empleada como marcador indirecto del estado hemodinámico dentro de la monitorización postoperatoria de las cardiopatías congénitas, así como fuente de información suplementaria no invasiva sobre el equilibrio entre el aporte y el consumo de O2 a nivel cerebral, pero siempre junto a otras variables de valor ya contrastado en la monitorización hemodinámica.

      1. Jöbsis, FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 1977; 198: 1264-7.

      2. Pellicer A, Bravo MC. Near-infrared spectroscopy: a methodology-focused review. Seminars in Fetal & Neonatal Medicine 2011; 16: 42-49.

      3. Murkin JM, Arango M. Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br J Anaesth 2009; 103 (Suppl. 1):i3-i13.

      4. Kurth CD, Steven JL, Montenegro LM, Watzman HM, Gaynor JW, Spray TL, et al. Cerebral oxygen saturation before congenital heart surgery. Ann Thorac Surg 2001; 72: 187¿92.

      5. Fenton KN, Freeman K, Glosgowski K, Fogg S, Duncan KF. The significance of baseline cerebral oxygen saturation in children undergoing congenital heart surgery. Am J Surg. 2005; 190:260¿263.

      6. McQuillen P, Nishimoto M, Botttrell C, Fineman L, Hamrick SE, Glidden D, et al. Regional and central venous oxygen saturation monitoring following pediatric cardiac surgery: Concordance and association with clinical variables. Pediatr Crit Care Med 2007; 8:154 ¿160.

      7. Gottlieb EA, Mossad EB. Limitations of cerebral oxygenation monitoring by near-infrared spectroscopy in children with cyanotic congenital heart disease and profound polycythemia. J Cardiothorac Vasc Anesth 2012; pii: S1053-0770(12)00429-6 (Epub).

      8. Hampton DA, Schreiber MA. Near infrared spectroscopy: clinical and research uses. Transfusion 2013; 53:52S-58S.

      9. Ferrari M, Giannini I, Sideri G, Zanette E. Continuous non invasive monitoring of human brain by near infrared spectroscopy. Adv Exp Med Biol 1985; 191:873-82.

      10. Wyatt JS, Cope M, Delpy DT, Wray S, Reynolds EO. Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectrophotometry. Lancet 1986; 2:1063-6.

      11. Dullenkopf A, Frey B, Baenziger O, Gerber A, Weiss M. Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter. Paediatric Anaesth 2003; 13:384¿391.

      12. Casatti A, Fanelli G, Pietropaoli Pm Proietti R, Tufano R, Montanini S. Monitoring cerebral oxygen saturation in elderly patients undergoing general abdominal surgery: a prospective cohort study. Eur J Anesthesiol 2007; 24(1):59-65.

      13. Joshi RK, Motta P, Horibe M, Mossad E. Monitoring cerebral oxygenation in a pediatric patient undergoing surgery for vascular ring. Paediatr Anaesth 2006; 16:178¿181.

      14. Fraser CD, Andropoulos DB. Neurologic monitoring for special cardiopulmonary bypass techniques. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2004; 7:125¿132.

      15. Dent CL, Spaeth jp, Jones BV, Schwartz SM, Glauser TA, Hallinan B, et al. Brain magnetic resonance imaging abnormalities alter the Norwood procedure using regional cerebral perfusion. J Thorac Cardiovasc Surg. 2006; 131(1):190-7.

      16. Mott A, Alomrani A, Tortoriello T, Perles Z, East D, Stayer S. Changes in cerebral saturation profile in response to mechanical ventilation alterations in infants with bidirectional superior cavopulmonary connection. Pediatr Crit Care Med 2006; 7(4):346-350.

      17. Shapiro NI, Arnold R, Sherwin R, O¿Connor J et al. The association of near-infrared spectroscopy-derived tissue oxygenation measurements with sepsis syndromes, organ dysfunction and mortality in emergency department patients with sepsis. Crit Care 2011; 15(5):R223. 18. Nanas S, Gerovasili V, Renieris P, Angelopoulos E, Poriazi M, Kritilkos K et al. Non-invasive assessment of the microcirculation in critically ill patients. Anaesth Intensive Care 2009; 37(5):733-739.

      19. Hoffman GM, Ghanayem NS, Berens RJ, Scanlon MC, Weigle CCG. Reduction in critical indicators of shock routine use if two site NIRS in pediatric ICU patients. Anesthesiology 2006; 105: A803.

      20. Yamamoto A, Yokoyama N, Yonetani M, Uetani Y, Nakamura H, Nakao H. Evaluation of change of cerebral circulation by SpO2 in preterm infants with apneic episodes using near infrared spectroscopy. Pediatr Int 2003; 45: 661¿4.

      21. Demirel G, Oguz SS, Celik IH, Erdeve O, Dilmen U. Cerebral and mesenteric tissue oxygenation by positional changes in very low birth weight premature infants. Early Hum Dev. 2012; 88(6):409-11.

      22. Zhang Y, Chan GS, Tracy MB, Lee QY, Hinder M, Savkin AV, Lovell NH. Cerebral near-infrared spectroscopy analysis in preterm infants with intraventricular hemorrhage. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:1937-40.

      23. Fuchs H, Linder W, Buschko A, Almazam M, Hummler HD, Schmid MB. Brain oxygenation monitoring during neonatal resuscitation of very low birth weight infants. J Perinatol 2012; 32(5):356-62.

      24. Salonia R, Bell MJ, Kochanek PM, Berger RP. The utility of near infrared spectroscopy in detecting intracranial hemorrhage in children. J Neurotrauma 2012; 29(6):1047-53.

      25. Wallois F, Patil A, Héberlé C, Grebe R. EEG-NIRS in epilepsy in children and neonates. Neurophysiol Clin 2010; 40(5-6):281-92.

      26. Smith J, Bricker S, Putnam B. Tissue oxygen saturation predicts the need for early blood transfusion in trauma patients. Am Surg 2008; 74: 1006¿11.

      27. Scheeren TWL, Schober P, Schwarte LA. Monitorin tissue oxygenation by near infrared spectroscopy (NIRS): background and current applications. J Clin Monit Comput 2012; 26:279-287.

      28. Drayna PC, Abramo TJ, Estrada C. Near-Infrared spectroscopy in the critical setting. Pediatr Emer Care 2011; 27:432-442.

      29. Tortoriello T, Stayer S, Mott A, Mckenzie E, Fraser C, Andropoulos D et al. A noninvasive estimation of mixed venous oxygen saturation using near-infrared spectroscopy by cerebral oximetry in pediatric cardiac surgery. Paediatr Anaesth 2005; 15: 495¿503.

      30. Marimón GA, Dockery WK, Sheridan MJ, Agarwal S. Near-infrared spectroscopy cerebral and somatic (renal) oxygen saturation correlation to continuous venous oxygen saturation via intravenous oximetry catheter. J Crit Care 2012; 27(3):314.e13-8.

      31. Charpie JR, Dekeon MK, Goldberg CS, Mosca RS, Bove EL, Kulik TJ. Serial blood lactate measurements predict early outcome after neonatal repair or palliation for complex congenital heart disease. J Thorac Cardiovasc Surg 2000;120:73-80.

      32. Muñoz R, Laussen PC, Palacio G, Zienko L, Piercey G, Wessel DL. Changes in whole blood lactate levels during cardiopulmonary bypass for surgery for congenital cardiac disease: an early indicator of morbidity and mortality. J Thorac Cardiovasc Surg 2000; 119:155-62.

      33. García-Hernández JA, Benítez-Gómez IL, Martínez-López AI, Praena-Fernández JM, Cano-Franco J, Loscertales-Abril M. Prognostic markers of mortality after congenital heart defect surgery. An Pediatr (Barc) 2012; 77(6): 366-73.

      34. Cheifetz IM,Kern FH, Schulman SR, Greeley WJ, Ungerleider RM, Meliones JN. Serum lactates correlate with mortality after operations for complex congenital heart disease. Ann Thorac Surg 1997; 64:735-738.

      35. Kaufman J, Almodóvar M, Zuck J, Friesen R. Correlation of abdominal site near-infrared spectroscopy with gastric tonometry in infants following surgery for congenital heart disease. Pediatr Crit Care Med 2008; 9(1): 62-68.

      36. Chakravarti S, Mittnacht A, Katz J, Nguyen K, Joashi U, Srivastava S. Multisite Near-Infrared spectroscopy predicts elevated blood lactate level in children after cardiac surgery. J Cardiothorac Vasc Anesth 2009; 23(5): 663-667.

      37. Li J, Zhang G, Holtby H, Guerguerian AM, Cai S, Humpi T et al. The influence of systemic hemodynamics and oxygen transport on cerebral oxygen saturation in neonates after the Norwood procedure. J Thorac Cardiovasc Surg 2008; 135(1):83-90.

      38. Li J, Van Arsdell GS, Zhang G, Cai S, Humpl T, Caldarone CA, et al. Assessment of the relationship between cerebral and splanchnic oxygen saturations measured by near-infrared spectroscopy and direct measurements of systemic haemodynamic variables and oxygen transport after the Norwood procedure. Heart 2006; 92(11):1678-85.

      39. Hirsch JC, Charpie JR, Ohye RG, Gurney JC. Near ¿Infrared spectroscopy: What we know and what we need to know ¿ A systematic review of the congenital heart disease literature. J Thorac Cardiovasc Surg 2009; 137 (1): 154-159.

      40. Hirsch JC, Charpie JR, Ohye RG, Gurney JG. Near infrared spectroscopy (NIRS) should not be a standard of care for postoperative management. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2010; 13(1):51-4.

      41. Ghanayem NS, Wernovsky G, Hoffman GM. Near-infrared spectroscopy as a hemodynamic monitor in critical illness. Pediatr Crit Care Med 2011; 12:27-32.

      42. Booth EA, Dukatz C, Ausman J, Wider M. Cerebral and somatic venous oximetry in adults and infants. Surg Neurol Int 2010; 1:75.

      43. Rivers EP, Ander DS, Powell D. Central venous oxygen saturation monitoring in the critically ill patient. Curr Opin Crit Care 2001;7(3):204-11.

      44. Nagdyman N, Fleck T, Barth S, Abdul-Khaliq H, Stiller B, Ewert P, et al. Relation of cerebral tissue oxygenation index to central venous oxygen saturation in children. Intensive Care Med 2004; 30:468¿471.

      45. Guerrero Fernández, J. En: Manual de Diagnóstico y Terapéutica en Pediatría. 5ª Ed. Madrid: Publimed; 2009. p. 1512.

      46. García-Hernández JA, Vázquez Florido A, Martínez López AI, Praena Fernández JM, Cayuela Domínguez A, Cano Franco J, et al. Extracción de oxígeno como predictor de mortalidad en pacientes con ventilación con alta frecuencia. An Pediatr (Barc). 2013; 78(2):94-103.

      47. Gámez Duque A, Fernández G, Gutiérrez AA, Montenegro G, Daza LC et al. Cálculo de los contenidos arterial y venoso de oxígeno, de la diferencia arteriovenosa de oxígeno, tasa de extracción tisular de oxígeno y shunt intrapulmonar con unas nuevas fórmulas, basadas en la saturación de oxígeno. Rev Fac Med UN Col 2000; 48(2):67-76.

      48. Astiz ME, Rackow EC. Assessing perfusion failure during circulatory shock. Crit Care Clin. 1993; 9:299-312.

      49. Whyte RK. Mixed venous oxygen saturation in the newborn. Can we and should we measure it? Scand J Clin Lab Invest. 1990;50 Suppl. 203:203.

      50. García Hernández JA, González Rodríguez JD, Martínez López AI et al. Resultados de la intervención de Norwood para el síndrome del corazón izquierdo hipoplásico. Rev Esp Cardiol 2007; 60(7):732-8.

      51. Barry P, Morris K, Ali T. Vascular access and clinical monitoring. En: Paediatric intensive care. 1ª Ed. New York: Oxford University Press; 2010, p. 62-101.

      52. Wernovsky G, Wypij D, Jonas RA, Mayer JE Jr, Hanley PR, Walsh AZ et al.Postoperative course and hemodynamic profile after the arterial switch operation inmneonates and infants. A comparison of low-flow cardiopulmonary bypass and circulatory arrest. Circulation 1995; 92(8):2226¿35.

      53. Gaies MG, Gurney JG, Yen AH, Napoli ML, Gajarski RJ, Ohye RG, Charpie JR, Hirsch JC. Vasoactive¿inotropic score as a predictor of morbidity and mortality in infants after cardiopulmonary bypass. Pediatr Crit Care Med 2010; 11:234¿238.

      54. Scheurer MA, Thiagarajan RR. Vasoactive-inotropic score as a measure of pediatric cardiac surgical outcomes. Pediatr Crit Care Med 2010; 11:307-308.

      55. Duke T, Butt W, South M, Karl TR. Early markers of major adverse events in children after cardiac operations. J Thorac Cardiovasc Surg 1997; 114(6):1042-1052.

      56. ARDS Definition Task Force, Rainieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA 2012; 307(23): 2526-33.

      57. Verhoeven JJ, Hokken-Koelega ACS, den Brinker M, Hop WCJ, van Thiel RJ et al. Disturbance of glucose homeostasis after pediatric cardiac surgery. Pediatr Cardiol 2011; 32:131-138.

      58. DeCampli WM, Olsen MC, Munro HM, Felix DE. Perioperative hyperlycemia: effect on outcome after congenital heart surgery. Ann Thorac Surg 2010; 89:181¿186.

      59. Moga MA, Manlhiot C, Marwali EM, McCrindle BW, Van Arsdell GS, Schwartz SM. Hyperglycemia after pediatric cardiac surgery: Impact of age and residual lesions. Crit Care Med 2011; 39(2): 266-272.

      60. Mildh LH, Pettilä V, Sairanen HI, Rautiainen PH. Cardiac troponin T levels for risk stratification in pediatric open heart surgery. Ann Thorac Surg 2006; 82:1643¿1649.

      61. Arkader R, Troster EJ, Monteiro Abellan D, Rezende Lopes M, Raiz Junior R, Carcillo JA, Okay TS. Procalcitonin and C-Reactive protein kinetics in postoperative pediatric cardiac surgical patients. J Cardiothorac Vasc Anesth 2004; 18(2):160-165.

      62. Jenkins KJ, Gauvreau K, Newburger JW, Spray TL, Moller JH, Iezzoni LI. Consensus-based method for risk adjustment for surgery for congenital heart disease. J Thorac Cardiovasc Surg 2002; 123:110-8.

      63. Cameron D. Initiation of white cell activation during cardiopulmonary bypass: cytokines and receptors. J Cardiovasc Pharmacol. 1996; 27 Suppl 1:S1.

      64. Schoroeder VA, Pearl JM, Schwartz SM, Shanley TP, Manning PB, Nelson DP. Combined steroid treatment for congenital heart surgery improves oxygen delivery and reduces postbypass inflammatory mediator expression. Circulation 2003; 107: 2823-2828.

      65. Bronicki RA, Backer CL, Baden HP, Mavroudis C, Crawford SE, Green TP. Dexamethasone reduces the inflammatory response to cardiopulmonary bypass in children. Ann Thorac Surg 2000; 69(5):1490-5.

      66. Ando M, Park IS, Wada N, Takahashi Y. Steroid supplementation: a legitimate pharmacotherapy after neonatal open heart surgery. Ann Thorac Surg 2005; 80(5):1672-1678.

      67. Kussman BD, Wypij D, DiNardo JA, Newburger J, Jonas RA, Bartlett J, McGrath E, Laussen PC. An evaluation of bilateral monitoring of cerebral oxygen saturation during pediatric cardiac surgery. Anesth Analg 2005; 101(5):1294¿1300.

      68. Hu BY, Laine GA, Wang S, Solis RT. Combined central venous oxygen saturation and lactate as markers of occult hypoperfusion and outcome following cardiac surgery. J Cardiothorac Vasc Anesth 2012; 26(1):52-7.

      69. Dullenkopf A, Frey B, Baenziger O, Gerber A, Weiss M. Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter. Paediatr Anaesth 2003; 13: 384¿391.

      70. Schranz D, Schmitt S, Oelert H, Schmid F, Huth R, Zimmer B, et al. Continuous monitoring of mixed venous oxygen saturation in infants after cardiac surgery. Intensive Care Med 1989; 15(4):228-32.

      71. Watzman HM, Kurth CD, Montenegro LM, Rome J, Steven JM, Nicolson SC. Arterial and venous contributions to near-infrared cerebral oximetry. Anesthesiology 2000; 93(4):947-53.

      72. Bhutta AT, Ford JW, Parker JG, Prodhan P, Fontenot EE, Seib PM, et al. Noninvasive cerebral oximeter as a surrogate for mixed venous saturation in children. Pediatr Cardiol. 2007; 28:34-41.

      73. Kirshbom PM, Forbess JM, Kogon BE, Simsic JM, Kim DW, Raviele AA, et al. Cerebral near infrared spectroscopy is a reliable marker of systemic perfusion in awake single ventricle children. Pediatr Cardiol 2007; 28(1):42-5.

      74. Ranucci M, Isgrò G, De la Torre T, Romitti F, Conti D, Carlucci C. Near-infrared spectroscopy correlates with continuous superior vena cava oxygen saturation in pediatric cardiac surgery patients. Paediatr Anaesth 2008; 18(12):1163-9.

      75. López-Herce J, Fernández B, Urbano J, Mencía S, Solana MJ, Del Castillo J, Rodríguez-Núñez A, Bellónd JM, Carrillo A. Correlations between hemodynamic, oxygenation and tissue perfusion parameters during asphyxial cardiac arrest and resuscitation in a pediatric animal model. Resuscitation 2011; 82:755¿759.

      76. Kochanek JS, Carney N, Adelson PD, et al. Guidelines for the acute medical management of severe traumatic brain injury in infants, children, and adolescents. Pediatric Crit Care Med. 2012; 13:S1-S82.

      77. Daubeney PEF, Smith DC, Pilkington PN, Lamb RK, Monro JL, Tsang VT, Livesey SA, Webber SA. Cerebral oxygenation during cardiac surgery: identification of vulnerable periods using near infrared spectroscopy. Eur J Cardiothorac Surg 1998; 13:370 ¿ 377.

      78. Tsuji M, Saul JP, du P A, et al. Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics 2000; 106:625¿32.

      79. Bassan H, Gauvreau K, Newburger JW, Tsuji M, Limperopoulos C, Soul JS et al. Identifcation of pressure passive cerebral perfusion and its mediators after infant cardiac surgery. Pediatr Res 2005; 57: 35¿41.

      80. Mulier KE, Skarda DE, Taylor JH, Myers DE, McGraw MK, Gallea BL, Beilman GJ. Near-infrared spectroscopy in patients with severe sepsis: correlation with invasive hemodynamic measurements. Surg Infect 2008; 9(5): 515-519.

      81. Phelps HM, Mahle WT, Kim D, Simsic JM, Kirshbom PM, Kanter KR, Maher KO. Postoperative cerebral oxygenation in hypoplastic left heart syndrome after the Norwood procedure. Ann Thorac Surg 2009; 87(5):1490-4.

      82. Maher KO, Phelps HM, Kirshbom PM. Near infrared spectroscopy changes with pericardial tamponade. Pediatr Crit Care Med 2009;10:e13¿5.

      83. Hyttel-Sorensen S, Austin T, van Bel F, Benders M, Claris O, Dempsey E, et al. A phase II randomized clinical trial on cerebral near-infrared spectroscopy plus a treatment guideline versus treatment as usual for extremely preterm infants during the first three days of life (SafeBoosC): study protocol for a randomized controlled trial. Trials 2013;14:120.

      84. Polito A, Thiagarajan RR, Laussen PC, Gauvreau K, Agus MS, Scheurer MA, Pigula FA, Costello JM. Association between intraoperative and early postoperative glucose levels and adverse outcomes after complex congenital heart surgery. Circulation 2008; 118(22):2235-42.

      85. Vlasselaers D, Mesotten D, Langouche L, -vanhorebeek I, van den Heuvel I, Milants I, et al. Tight glycemic control protects the myocardium and reduces inflammation in neonatal heart surgery. Ann Thorac Surg 2010; 90(1):22-9.

      86. Immer FF, Stocker FP, Seiler AM, Pfammatter JP, Printzen G, Carrel TP. Comparison of troponin-I and troponin-T after pediatric cardiovascular operation. Ann Thorac Surg 1998;66:2073¿7.

      87. Hirsch R, Dent CL, Wood MK, Huddleston CB, Mendeloff EN, Balzer DT, et al. Patterns and potential value of cardiac troponin I elevations after pediatric cardiac operations. Ann Thorac Surg 1998;65:1394 ¿9.

      88. Murkin JM, Adams SJ, Novick RJ, Quantz M, Bainbridge D, Iglesias I, et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg 2007; 104(1):51-8.

      89. Slater JP, Guarino T, Stack J, Vinod K, Bustami RT, Brown JM, et al. Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg 2009; 87(1):36-45.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno