La diabetes de tipo 1 resulta de la destrucción autoinmune de las células ß pancreáticas, que conduce a una falta en la producción de insulina y la consiguiente hiperglucemia. La terapia sustitutiva con inyecciones subcutáneas de insulina permite a los pacientes llevar un vida activa, sin embargo esta terapia es imperfecta y no evita la aparición de graves complicaciones secundarias. El transplante de páncreas o islotes pancreáticos se ha realizado con éxito en algunos pacientes, sin embargo la escasez de donantes impide que esta terapia se pueda aplicar a todos los individuos diabéticos. Por ello, una gran cantidad de esfuerzos se han centrado en la diferenciación de células madre, embrionarias o adultas, en células ß. Las células de la médula ósea (BMC) poseen propiedades de célula madre adulta y además son fáciles de obtener, por ello se han propuesto como una fuente alternativa para la formación de nuevas células ß. El factor de crecimiento a la insulina de tipo I (IGF-I) participa en la regeneración muscular e incrementa la atracción y diferenciación de BMC en el músculo dañado. Además, la expresión de IGF-I específicamente en células ß de ratones diabéticos es capaz de regenerar la masa de células ß. Así, el primer objetivo de este trabajo fue estudiar la capacidad de la expresión de IGF-I en las células ß para atraer y diferenciar las BMC en nuevas células ß, tanto en ratones sanos como en ratones diabéticos. Con esta finalidad se transplantó la médula ósea de ratones transgénicos que expresaban la proteína verde fluorescente (GFP) constitutivamente, en los ratones transgénicos para IGF-I. Los resultados obtenidos demostraron que ni la sobreexpresión de IGF-I en células ß, ni la inducción de diabetes mediante estreptozotocina fueron causa suficiente para atraer y diferenciar las BMC en células ß pancreáticas in vivo. Estos datos sugerían que la regeneración del páncreas endocrino observada en los ratones transgénicos para IGF-I no era mediada por las BMC, indicando que la replicación de células ß preexistentes o bien la diferenciación a partir de precursores no hematopoyéticos son los mecanismos que actuarían en la regeneración de las células ß mediada por IGF-I.
La diabetes se ha intentando curar mediante estrategias de terapia génica, sin embargo hasta el momento no se ha conseguido ninguna terapia efectiva. La recuperación completa del paciente diabético de tipo 1 requeriría la regeneración de las células ß. Una aproximación para conseguir este objetivo es la manipulación genética del páncreas endocrino in vivo, con la finalidad de expresar factores que induzcan replicación o neogénesis de las células ß y además contrarrestar la respuesta inmune. Sin embargo, el riesgo de inducir pancreatitis al manipular el páncreas es elevado, y por tanto se han realizado escasos intentos de modificar genéticamente este órgano hasta la fecha. Por ello, nuevas aproximaciones de transferencia génica in vivo son necesarias para avanzar en el desarrollo de nuevas aproximaciones de terapia génica para la diabetes. En este trabajo hemos estudiado la eficiencia de diferentes vectores virales y diferentes vías de administración para transducir el páncreas in vivo, tanto en ratones como en perros. En primer lugar, observamos que las células ß pancreáticas fueron transducidas eficientemente por adenovirus inyectados vía sistémica en ratones a los cuales se les había cerrado la circulación hepática. Este resultado obtenido con vectores adenovirales de primera generación también se obtuvo cuando usamos vectores adenovirales de última generación, también llamados gutless. Además de vectores adenovirales, también se estudio la capacidad de transducir el páncreas de los vectores adenoasociados de serotipo 8 (AAV8). Así, se demostró que la vía de administración de los vectores AAV8 por el conducto pancreático era más efectiva que la administración de estos vectores por vía endovenosa o intraperitoneal.
El páncreas del perro presenta una estructura lobular y una vascularización similar al humano, por tanto constituye un buen modelo para ensayar estrategias de transferencia génica a páncreas. En este trabajo se estudió la capacidad de los vectores adenovirales para transferir genes a páncreas in vivo en animales sometidos a un clamp circulatorio de los vasos pancreáticos. Adenovirus con el gen marcador de la ß-galactosidasa se inyectaron en la vena pancreaticoduodenal y el clamp se mantuvo durante 10 minutos. Usando esta técnica se consiguió transducir células acinares, ductales y también islotes pancreáticos sin evidencias de daño pancreático. Esta técnica también se ensayó con éxito en un perro diabético.
Por consiguiente, la metodología descrita en este trabajo puede ser usada para transducir el páncreas in vivo, ya sea en ratones o en perros, con la finalidad de estudiar la biología de las células ß o bien para desarrollar nuevas aproximaciones terapéuticas para la diabetes mellitus y otras enfermedades pancreáticas.
______________________________________________________________ Type 1 diabetes is characterized by progressive destruction of pancreatic ?-cells, resulting in insulin deficiency and hyperglycemia. Insulin replacement therapy allows diabetic patients to lead active lives, but this therapy is imperfect and does not prevent development of severe secondary complications. Transplantation of pancreatic tissue or islets has been performed successfully in a limited numbers of patients. However, the shortage of donors is a primary obstacle that prevents this treatment from becoming more widespread. Therefore, many efforts have been focused on differentiating embryonic or adult stem cells into ß-cells. Bone marrow cells (BMCs) are an important source of easily procurable adult stem cells and have been proposed as an alternative source of ß-cells. Insulin-like growth factor-I (IGF-I) participates in skeletal muscle regeneration and enhances the recruitment of BMCs at the sites of muscle injury. In addition, IGF-I expression in ß-cells of diabetic transgenic mice regenerates pancreatic ß-cell mass. Therefore one of the objectives of this study was to investigate whether IGF-I expression in ß-cells could increase BMC recruitment and differentiation into ß-cells under steady-state conditions or after STZ treatment. To this end, BMCs from ß-actin/GFP transgenic donor mice were transplanted into IGF-I transgenic mice. Our experiments have demonstrated that IGF-I overexpression or STZ-induced pancreatic damage were not sufficient to recruit and differentiate GFP-labelled BMCs into ß-cells in vivo, indicating that these cells did not contribute to the endocrine pancreas regeneration observed in IGF-I transgenic mice. These data suggest that replication of pre-existing ß-cells and/or differentiation from non-BMC precursors is the most likely mechanism for IGF-I-mediated regeneration.
Diabetes mellitus has long been targeted, as yet unsuccessfully, as being curable with gene therapy. Recovery from type 1 diabetes requires ß-cell regeneration. One approach to do so is by genetically engineering the endocrine pancreas in vivo to express factors that induce ß-cell replication and neogenesis and counteract the immune response. However, the pancreas is difficult to manipulate and pancreatitis is a serious concern, which has made effective gene transfer to this organ elusive. Thus, new approaches for gene delivery to the pancreas in vivo are required. In this study we have examined different viral vectors and routes of administration in rodents and also in large animals, to determine the most efficient method to deliver exogenous genes to the pancreas. First, we observed that pancreatic ß-cells were efficiently transduced to express ß-galactosidase after systemic injection of adenoviral vectors in mice with clamped hepatic circulation. This was true both for first generation as well as for helper-dependent adenoviral vectors. In addition to adenoviruses, we have compared the ability of AAV vectors to transduce the pancreas in vivo after intravascular, intraperitoneal or intraductal delivery, being the last the most efficient route of administration.
Like the human pancreas, the canine pancreas is compact, with similar vascularization and lobular structure. It is therefore a suitable model in which to assess gene transfer strategies. Here we examined the ability of adenoviral vectors to transfer genes into the pancreas of dogs in which pancreatic circulation has been clamped. Adenoviruses carrying the ß-galactosidase (ß-gal) gene were injected into the pancreatic-duodenal vein and the clamp was released 10 min later. These dogs showed ß-gal-positive cells throughout the pancreas, with no evidence of pancreatic damage. ß-gal was expressed mainly in acinar cells, but also in ducts and islets. ß-gal expression in the exocrine pancreas of a diabetic dog was also found to be similar to that observed in healthy dogs.
Thus, the methodology described herein may be used to transfer genes of interest to murine and canine pancreas in vivo, both for the study of islet biology and to develop new gene therapy approaches for diabetes mellitus and other pancreatic disorders.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados