El objetivo de esta tesis es modelar y predecir la volatilidad de las series financieras con modelos de volatilidad en tiempo discreto y continuo.
En mi primer capítulo, intento modelar las principales características de las series financieras, como a persistencia y curtosis. Los modelos de volatilidad estocástica estimados son extensiones directas de los modelos de Gallant y Tauchen (2001), donde incluyo un elemento de retro-alimentación. Este elemento es de extrema importancia porque permite captar el hecho de que períodos de alta volatilidad están, en general, seguidos de periodos de gran volatilidad y viceversa. En este capítulo, como en toda la tesis, uso el método de estimación eficiente de momentos de Gallant y Tauchen (1996). De la estimación surgen dos modelos posibles de describir los datos, el modelo logarítmico con factor de volatilidad y retroalimentación y el modelo logarítmico con dos factores de volatilidad. Como no es posible elegir entre ellos basados en los tests efectuados en la fase de la estimación, tendremos que usar el método de reprogección para obtener mas herramientas de comparación. El modelo con un factor de volatilidad se comporta muy bien y es capaz de captar la quiebra de los mercados financieros de 1987.
En el segundo capítulo, hago la evaluación del modelo con dos factores de volatilidad en términos de predicción y comparo esa predicción con las obtenidas con los modelos GARCH y ARFIMA. La evaluación de la predicción para los tres modelos es hecha con la ayuda del R2 de las regresiones individuales de la volatilidad realizada en una constante y en las predicciones. Los resultados empíricos indican un mejor comportamiento del modelo en tiempo continuo. Es más, los modelos GARCH y ARFIMA parecen tener problemas en seguir la marcha de la volatilidad realizada.
Finalmente, en el tercer capítulo hago una extensión del modelo de volatilidad estocástica de memoria larga de Harvey (2003). O sea, introduzco un factor de volatilidad de corto plazo. Este factor extra aumenta la curtosis y ayuda a captar la persistencia (que es captada con un proceso integrado fraccional, como en Harvey (1993)). Los resultados son probados y el modelo implementado empíricamente.
The purpose of my thesis is to model and forecast the volatility of the financial series of returns by using both continuous and discrete time stochastic volatility models.
In my first chapter I try to fit the main characteristics of the financial series of returns such as: volatility persistence, volatility clustering and fat tails of the distribution of the returns.The estimated logarithmic stochastic volatility models are direct extensions of the Gallant and Tauchen's (2001) by including the feedback feature. This feature is of extreme importance because it allows to capture the low variability of the volatility factor when the factor is itself low (volatility clustering) and it also captures the increase in volatility persistence that occurs when there is an apparent change in the pattern of volatility at the very end of the sample. In this chapter, as well as in all the thesis, I use Efficient Method of Moments of Gallant and Tauchen (1996) as an estimation method. From the estimation step, two models come out, the logarithmic model with one factor of volatility and feedback (L1F) and the logarithmic model with two factors of volatility (L2). Since it is not possible to choose between them based on the diagnostics computed at the estimation step, I use the reprojection step to obtain more tools for comparing models. The L1F is able to reproject volatility quite well without even missing the crash of 1987.
In the second chapter I fit the continuous time model with two factors of volatility of Gallant and Tauchen (2001) for the return of a Microsoft share. The aim of this chapter is to evaluate the volatility forecasting performance of the continuous time stochastic volatility model comparatively to the ones obtained with the traditional GARCH and ARFIMA models. In order to inquire into this, I estimate using the Efficient Method of Moments (EMM) of Gallant and Tauchen (1996) a continuous time stochastic volatility model for the logarithm of asset price and I filter the underlying volatility using the reprojection technique of Gallant and Tauchen (1998). Under the assumption that the model is correctly specified, I obtain a consistent estimator of the integrated volatility by fitting a continuous time stochastic volatility model to the data. The forecasting evaluation for the three estimated models is going to be done with the help of the R2 of the individual regressions of realized volatility on the volatility forecasts obtained from the estimated models. The empirical results indicate the better performance of the continuous time model in the out-of-sample periods compared to the ones of the traditional GARCH and ARFIMA models. Further, these two last models show difficulties in tracking the growth pattern of the realized volatility. This probably is due to the change of pattern in volatility in this last part of the sample.
Finally, in the third chapter I come back to the model specification and I extend the long memory stochastic volatility model of Harvey (1993) by introducing a short run volatility factor. This extra factor increases kurtosis and helps the model capturing volatility persistence (that it is captured by a fractionally integrated process as in Harvey (1993) ). Futhermore, considering some restrictions of the parameters it is possible to fit the empirical fact of small first order autocorrelation of squared returns. All these results are proved theoretically and the model is implemented empirically using the S&P 500 composite index returns. The empirical results show the superiority of the model in fitting the main empirical facts of the financial series of returns.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados