Ayuda
Ir al contenido

Dialnet


Numerical-Informational methodology for characterising steel bolted components coupling finite element simulations and soft computing techniques

  • Autores: Julio Fernández Ceniceros
  • Directores de la Tesis: Francisco Javier Martínez de Pisón Ascacíbar (dir. tes.), Andrés Sanz García (dir. tes.)
  • Lectura: En la Universidad de La Rioja ( España ) en 2015
  • Idioma: inglés
  • Número de páginas: 172
  • Tribunal Calificador de la Tesis: Joaquín Bienvenido Ordieres Meré (presid.), Luis Alfredo Fernández Jiménez (secret.), Ana M. Girão Coelho (voc.)
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: Dialnet
  • Resumen
    • español

      La caracterización de uniones de acero ha sido un tema de investigación muy activo en las últimas décadas debido a su complejidad y vital importancia en el comportamiento de una estructura. La aparición del concepto semirrígido proporcionó destacados beneficios tanto desde el punto de vista estructural como de la perspectiva económica pero, a su vez, exigió procedimientos de cálculo más sofisticados y avanzados. Un enfoque que ha ganado popularidad entre investigadores y calculistas es el método basado en componentes, capaz de estimar el comportamiento de una unión estructural a partir de las curvas características fuerza-desplazamiento de cada uno de los componentes de la unión. Aunque el método es muy versátil y permite modelar cualquier configuración de unión, es necesaria una detallada caracterización de cada uno de los componentes para conseguir una buena precisión en el cálculo.

      En este contexto, esta tesis presenta una metodología híbrida para determinar la curva completa fuerza-desplazamiento en componentes atornillados. La metodología combina modelos numéricos y modelos de predicción para estimar parámetros de las curvas, tales como la rigidez inicial, la resistencia máxima o el desplazamiento en la fractura. En primer lugar se desarrollan modelos numéricos basados en el método de los elementos finitos (FEM) para reproducir la respuesta real del componente atornillado. Estos modelos incorporan mecanismos de daño progresivo y criterios de fallo para estimar el desplazamiento en la fractura. Con el objetivo de minimizar el gran coste computacional del FEM, se genera un conjunto de simulaciones para entrenar modelos de predicción basados en soft computing (SC). Estos modelos de predicción incluyen una optimización con algoritmos genéticos (GA) para ajustar los parámetros del modelo y, al mismo tiempo, seleccionar las variables de entrada más importantes en la predicción de la respuesta fuerza-desplazamiento. En su conjunto, la metodología propuesta es capaz de proporcionar modelos de predicción precisos y parsimoniosos.

      La aplicación de la metodología híbrida queda demostrada en la caracterización de dos componentes atornillados fundamentales: la unión a solape y la unión en 'T'. Los resultados obtenidos en la caracterización de ambos componentes resaltan la mayor precisión de la metodología propuesta en comparación con las actuales normativas de cálculo y con modelos analíticos tradicionales. Una vez entrenados y validados, los modelos de predicción son capaces de reemplazar a las costosas simulaciones FE sin una pérdida de precisión significativa y con un coste computacional despreciable. Por tanto, la metodología híbrida podría representar una herramienta efectiva para ser implementada en programas de análisis estructural para diseñadores y calculistas.

      Finalmente, las contribuciones presentadas en estas tesis evidencian el gran potencial de combinar FEM y SC para predecir el comportamiento de componentes estructurales.

    • English

      Over the last few decades, the characterisation of steel joints has been a highly active research topic thanks to its inherent complexity and utmost importance in the behaviour of a whole structure. The emergence of the semi-rigid concept provided significant benefits from both the structural and economic perspectives, in exchange for more advanced and sophisticated calculation procedures. An approach that has gained popularity is the component-based method, in which the overall behaviour of the joint can be determined from the force-displacement responses of its individual components. Although this method is very versatile for modelling any joint configuration, a detailed characterisation of components is necessary to ensure accuracy.

      In this context, this thesis presents a hybrid methodology to determine the comprehensive force-displacement curve of bolted components: from initial stiffness up to the fracture point. This methodology couples numerical and informational models to predict key parameters of curves, such as initial stiffness, maximum resistance and displacement at failure. To this end, numerical models based on the finite element method (FEM) are first developed to reproduce the real response of bolted components. These models incorporate progressive damage mechanisms and failure criteria to accurately estimate the displacement at fracture. In order to minimise the computational burden of the FEM, the results of a set of simulations are then utilised to train informational models based on soft computing (SC). A genetic algorithm (GA) optimisation is included to set up model parameters and select the most relevant input variables for predicting the force-displacement response. Taken together, the proposed methodology is capable of providing accurate and parsimonious informational models.

      The applicability of the hybrid methodology is demonstrated for the characterisation of two fundamental bolted components: the lap and the T-stub. The results obtained highlight the superior accuracy of this methodology as compared to current regulatory codes and traditional analytical models. Once trained and validated, the informational models are able to replace costly FE simulations without a significant decrease in accuracy, and at a negligible computational cost. Therefore, the hybrid methodology could represent an effective tool to be implemented in structural analysis software for designers and practitioners.

      Overall, the contributions presented in this thesis provide evidence of the great potential of combining FEM and SC to predict the behaviour of structural components.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno