The pursuit of sustainable development in urban areas is crucial due to their significance as the primary human habitat and resource consumer. Rapid urbanization poses significant challenges for city management, necessitating actions to ensure sustainability and mitigate resource depletion. The conservation of water resources turns out to be an important focus, particularly in society's development due to the number of factors that depend on this resource. Water resources are essential for, serving critical roles in human health, agriculture, and industry, while also facilitating economic activities, cultural values, and climate regulation. In this context, the sustainability of water systems encompasses social, environmental, economic, and asset dimensions. Nevertheless, the accelerated social growth, exacerbates the strain on water supplies, necessitating measures to ensure sustainability. Key considerations include ensuring equitable access to water services, minimizing environmental impact, implementing cost-effective policies, and enhancing infrastructure resilience. Adopting sustainable practices encounters obstacles, particularly in data measurement and analysis, hindered by the complexities of emerging technologies. Addressing these challenges requires leveraging indicators to assess progress towards Sustainable Development Goals (SDGs) quantitatively. Despite significant strides, evaluating progress toward SDGs remains a complex task, particularly in urban water systems. Consequently, ongoing efforts are essential to advance sustainable development initiatives and ensure the long-term viability of urban water resources. Even though the SDGs have motivated several projects to advance sustainable development. However, it is complex to determine the progress made in fulfilling these goals, especially in particular cases like urban water systems. The development of a framework to measure sustainability in urban water systems contributes to the decision- making process to optimize system performance across the entire water cycle. These decision-making processes are crucial for various stakeholders, including governmental entities, the general population, and, of course, water resource managers.
Considering the above, the main objective of this doctoral thesis consists of the development of a methodology to measure and categorize hydraulic systems according to their contribution to sustainability from their three dimensions. The methodology is based on the implementation of a series of indicators linked to each of the goals of the Sustainable Development Goals established by the UN. In this way and as a result of this work, it will be possible to categorize any type of urban water system with labels that indicate the level of contribution to achieving the SDGs and highlight the importance of water resources in meeting the SDGs. Also, another objective of the methodology's implementation is to validate by assessing the progress of the indicators if it is sufficient, or if acceleration and additional measures are required. This will serve as a benchmarking tool, as a support point for decision-making by the different actors involved in hydraulic management, thus achieving more sustainable water management.
To achieve this objective, the doctoral thesis has been developed in three phases, the results of which have been published in 3 articles in indexed journals (JCR). The phases of work development are as follows: (i) Contextualization and development of the methodology (Publication I): an investigation was carried out on the concept of sustainability and what it encompassed, as well as the definition of the goals, their progress, and indicators currently used by both the UN and other entities for the evaluation of these. To complement this, case studies of urban hydraulic systems in which sustainability was evaluated were reviewed. Based on the information collected and as a result of the research, the evaluation methodolo
© 2001-2026 Fundación Dialnet · Todos los derechos reservados