Ayuda
Ir al contenido

Dialnet


Resumen de Carotenogenesis in haloarchaea: From genetics to biotechnological and biomedical applications

Micaela Giani Alonso

  • Los carotenoides son pigmentos sintetizados por una gran variedad de seres vivos, incluyendo hongos, algas, plantas y microorganismos. Son conocidos mayormente por sus propiedades antioxidantes, pero presentan otras propiedades potencialmente beneficiosas, tales como actividad inmunomodulatoria o efectos antitumorales. En la actualidad, hay una demanda creciente de productos de origen natural, y la síntesis microbiana de carotenoides se presenta como una alternativa interesante a la actual síntesis química. Las arqueas halófilas, como Haloferax mediterranei, producen el carotenoide bacteriorruberina (BR), cuya estructura a priori le confiere un gran potencial antioxidante.

    El objetivo de este trabajo fue, en primer lugar, optimizar la síntesis de BR utilizando a Haloferax mediterranei como biofactoría y, en segundo lugar, explorar aplicaciones biomédicas de dichos extractos carotenoideos.

    En una primera fase, a través de un estudio bioinformático, se identificaron los genes implicados en la síntesis de carotenoides en haloarqueas, los cuales están altamente conservados y se propuso una posible ruta de síntesis. A continuación, se exploró la respuesta de Haloferax mediterranei, en términos de síntesis de BR, a un estrés oxidativo generado por peróxido de hidrógeno. Haloferax mediterranei demostró una elevada tolerancia (hasta 25 mM) y se observó un aumento en la producción del carotenoide en respuesta a concentraciones crecientes del oxidante.

    Como resultados del proceso de optimización, la combinación de una reducción en la concentración de sales inorgánicas (12.5%(p/v)), junto con una temperatura del 36,5% y elevada disponibilidad de carbono, en forma de glucosa o almidón (2,5% (p/v)), dio lugar a una de las concentraciones de BR más elevadas que se ha registrado en la literatura.

    Además, se caracterizó el potencial antioxidante de los extractos obtenidos a través de cuatro técnicas distintas (ensayos de DPPH, FRAP, ABTS y decoloración del ß-caroteno), confirmando la elevada actividad de los extractos ricos en BR. Por otra parte, se detectó que las variaciones en la concentración de carbono en el medio de cultivo modulan la síntesis de carotenoides, alterando la composición de los extractos y sus propiedades.

    Por último, la segunda fase de la tesis estuvo enfocada en la búsqueda de aplicaciones biomédicas. Por ese motivo, se determinó que los extractos ricos en BR producidos por Haloferax mediterranei eran capaces de inhibir las enzimas glucosidasa, amilasa y lipasa pancreática con mayor éxito que inhibidores comerciales, lo cual implica que podrían ser de gran utilidad para reducir el pico de glucosa posprandial en pacientes diabéticos; y la absorción de lípidos a nivel intestinal en pacientes con obesidad. Asimismo, en paralelo se evaluó el efecto de los carotenoides de Haloferax mediterranei en líneas celulares representativas de los subtipos de tumores de mama. Los resultados indicaron que el tratamiento tiene un efecto selectivo sobre las líneas celulares tumorales. Los subtipos más afectados son los tumores luminal A y B, aunque las líneas representativas de tumores triple negativo y aquellos con sobreexpresion de HER2 respondieron favorablemente al tratamiento, lo cual es muy prometedor.

    En definitiva, la producción de carotenoides por Haloferax mediterranei puede ser optimizada con éxito a través de la modulación de las condiciones de cultivo, y los extractos obtenidos tienen gran potencial en la industria biotecnológica y biomédica.

    Bibliografía 1. Amengual J. Bioactive properties of carotenoids in human health. Nutrients. 2019;11(10):2388. doi: 10.3390/nu11102388.

    2. Saini RK, Prasad P, Lokesh V, Shang X, Shin J, Keum YS, Lee JH. Carotenoids: dietary sources, extraction, encapsulation, bioavailability, and health benefitsa review of recent advancements. Antioxidants. 2022;11(4):795. doi: 10.3390/antiox11040795.

    3. Riaz M, Zia-Ul-Haq M, Dou D. Chemistry of Carotenoids. En: Zia-Ul-Haq M, Dewanjee S, Riaz M, editores. Carotenoids: structure and function in the human body. Cham: Springer International Publishing; 2021; p. 43-76. doi: 10.1007/978-3-030-46459-2 4. Maoka T. Carotenoids as natural functional pigments. Journal of Natural Medicines. 2020;74(1):1-16. doi: 10.1007/s11418-019-01364-x 5. Langi P, Kiokias S, Varzakas T, Proestos C. Carotenoids: From plants to food and feed industries. En: Barreiro C, Barredo JL, editores. Microbial Carotenoids. New York, NY: Springer New York; 2018; p. 57-71. (Methods in Molecular Biology; vol. 1852). doi: 10.1007/978-1-4939-8742-9_3.

    6. Córdova P, Baeza M, Cifuentes V, Alcaíno J. Microbiological synthesis of carotenoids: pathways and regulation. En: Zepka LQ, Jacob-Lopes E, Rosso VVD, editores. Progress in Carotenoid Research. InTech; 2018. doi: 10.5772/intechopen.78343 7. Gupta AK, Seth K, Maheshwari K, Baroliya PK, Meena M, Kumar A, Vinayak V, Harish. Biosynthesis and extraction of high-value carotenoid from algae. Frontiers in Bioscience-Landmark-IMR Press. 2021;26(6):171-90. doi: 10.52586/4932 8. Le Goff M, Le Ferrec E, Mayer C, Mimouni V, Lagadic-Gossmann D, Schoefs B, Ulmann L. Microalgal Carotenoids and phytosterols regulate biochemical mechanisms involved in human health and disease prevention. Biochimie. 2019;167:106-18. doi: 10.1016/j.biochi.2019.09.012 9. Galasso C, Corinaldesi C, Sansone C. Carotenoids from marine organisms: biological functions and industrial applications. Antioxidants. 2017;6(4):96. doi: 10.3390/antiox6040096.

    10. Xu DP, Li Y, Meng X, Zhou T, Zhou Y, Zheng J, Zhang JJ, Li HB. Natural antioxidants in foods and medicinal plants: extraction, assessment and resources. International Journal of Molecular Sciences. 2017;18(1):E96. doi: 10.3390/ijms18010096.

    11. Manivasagan P, Bharathiraja S, Santha Moorthy M, Mondal S, Seo H, Dae Lee K, Oh J. Marine natural pigments as potential sources for therapeutic applications. Critical Reviews in Biotechnology. 2018;38(5):745-61. doi: 10.1080/07388551.2017.1398713.

    12. Martínez GM, Pire C, Martínez-Espinosa RM. Hypersaline environments as natural sources of microbes with potential applications in biotechnology: the case of solar evaporation systems to produce salt in Alicante county (Spain). Current Research in Microbial Sciences. 2022;3:100136. doi: 10.1016/j.crmicr.2022.100136.

    13. Rodrigo-Baños M, Garbayo I, Vílchez C, Bonete M, Martínez-Espinosa R. Carotenoids from haloarchaea and their potential in biotechnology. Marine Drugs. 2015;13(9):5508-32. doi: 10.3390/md13095508.

    14. Surai PF. The antioxidant properties of canthaxanthin and its potential effects in the poultry eggs and on embryonic development of the chick. Part 2. Worlds Poultry Science Journal. 2012;68(4):717-26. doi: 10.1017/S0043933912000578 15. Papaioannou EH, Liakopoulou-Kyriakides M, Karabelas AJ. Natural origin lycopene and its «green» downstream processing. Critical Reviews in Food Science and Nutrition. 2016;56(4):686-709. doi: 10.1080/10408398.2013.817381.

    16. Lamers PP, Janssen M, De Vos RCH, Bino RJ, Wijffels RH. Exploring and exploiting carotenoid accumulation in Dunaliella salina for cell-factory applications. Trends in Biotechnology. 2008;26(11):631-8. doi: 10.1016/j.tibtech.2008.07.002.

    17. Hosseini Tafreshi A, Shariati M. Dunaliella biotechnology: methods and applications. Journal of Applied Microbiology. 2009;107(1):14-35. doi: 10.1111/j.1365-2672.2009.04153.x.

    18. Ambati RR, Gogisetty D, Aswathanarayana RG, Ravi S, Bikkina PN, Bo L, Yuepeng S. Industrial potential of carotenoid pigments from microalgae: current trends and future prospects. Critical Reviews in Food Science and Nutrition. 2019;59(12):1880-902. doi: 10.1080/10408398.2018.1432561.

    19. Torregrosa-Crespo J, Martínez-Espinosa RM, Esclapez J, Bautista V, Pire C, Camacho M, Richardson DJ, Bonete MJ. Anaerobic Metabolism in Haloferax Genus. Advances in Microbial Physiology. 2016; 68:41-85. doi: 10.1016/bs.ampbs.2016.02.001.

    20. Torregrosa-Crespo J, Galiana CP, Martínez-Espinosa RM. Biocompounds from Haloarchaea and their uses in Biotechnology. En: Sghaier H, Najjari A, Ghedira K, editores. Archaea - New Biocatalysts, Novel Pharmaceuticals and Various Biotechnological Applications. InTech; 2017. doi: 10.5772/intechopen.69944 21. Wang K, Zhang R. Production of Polyhydroxyalkanoates (PHA) by Haloferax mediterranei from food waste derived nutrients for biodegradable plastic applications. Journal of Microbiology and Biotechnology. 2021;31(2):338-47. doi: 10.4014/jmb.2008.08057.

    22. Rodriguez-Valera F, Juez G, Kushner DJ. Halobacterium mediterranei spec, nov., a new carbohydrate-utilizing extreme halophile. Systematic and Applied Microbiology. 1983;4(3):369-81. doi: 10.1016/S0723-2020(83)80021-6 23. Oren A. Life at high salt concentrations. En: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editores. The Prokaryotes. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p. 421-40. doi: 10.1007/0-387-30742-7_9 24. Oren A. Halophilic microbial communities and their environments. Current Opinion in Biotechnology. 2015;33:119-24. doi: 10.1016/j.copbio.2015.02.005 25. Imhoff JF. Survival strategies of microorganisms in extreme saline environments. Advances in Space Research. 1986;6(12):299-306. doi: 10.1016/0273-1177(86)90098-0 26. Jones DL, Baxter BK. DNA repair and photoprotection: mechanisms of overcoming environmental ultraviolet radiation exposure in halophilic Archaea. Frontiers in Microbiology. 2017;8:1882. doi: 10.3389/fmicb.2017.01882 27. Oren A. The microbiology of red brines. Advances in Applied Microbiology. Elsevier; 2020;113:57-110. doi: 10.1016/bs.aambs.2020.07.003.

    28. Yabuzaki J. Carotenoids database: structures, chemical fingerprints and distribution among organisms. Database. 2017;2017:bax004. doi: 10.1093/database/bax004.

    29. Rodrigo-Baños M, Montero Z, Torregrosa-Crespo J, Garbayo I, Vílchez C, Martínez-Espinosa RM. Haloarchaea: A promising biosource for carotenoid production. En: Misawa N, editor. Carotenoids: Biosynthetic and Biofunctional Approaches. Singapore: Springer Singapore; Advances in Experimental Medicine and Biology. 2021; 1261:165-74. doi: 10.1007/978-981-15-7360-6_13.

    30. Sahli K, Gomri MA, Esclapez J, Gómez-Villegas P, Ghennai O, Bonete MJ, León R, Khrarroub K. Bioprospecting and characterization of pigmented halophilic archaeal strains from Algerian hypersaline environments with analysis of carotenoids produced by Halorubrum sp. BS2. Journal of Basic Microbiology. 2020;60(7):624-38. doi: 10.1002/jobm.202000083.

    31. Sahli K, Gomri MA, Esclapez J, Gómez-Villegas P, Bonete MJ, León R, Kharroub K. Characterization and biological activities of carotenoids produced by three haloarchaeal strains isolated from Algerian salt lakes. Archives of Microbiology. 2021;204(1):6. doi: 10.1007/s00203-021-02611-0.

    32. Yatsunami R, Ando A, Yang Y, Takaichi S, Kohno M, Matsumura Y, Ikeda H, Fukui T, Nakasone K, Fujita N, Sekine M, Takashina T, Nakamura S. Identification of carotenoids from the extremely halophilic archaeon Haloarcula japonica. Frontiers in Microbiology. 2014;5. doi: 10.3389/fmicb.2014.00100.

    33. Kesbiç FI, Gültepe N. C50 carotenoids extracted from Haloterrigena thermotolerans strain K15: antioxidant potential and identification. Folia Microbiologica. 2022;67(1):71-9. doi: 10.1007/s12223-021-00905-w.

    34. Lizama C, Romero-Parra J, Andrade D, Riveros F, Bórquez J, Ahmed S, Venegas-Salas L, Cabalín C, Simirgiotis MJ. Analysis of carotenoids in haloarchaea species from Atacama saline lakes by High Resolution UHPLC-Q-Orbitrap-Mass Spectrometry: antioxidant potential and biological effect on cell viability. Antioxidants. 2021;10(8):1230. doi: 10.3390/antiox10081230.

    35. Alvares JJ, Furtado IJ. Characterization of multicomponent antioxidants from Haloferax alexandrinus GUSF-1 (KF796625). 3 Biotech. 2021;11(2):58. doi: 10.1007/s13205-020-02584-9.

    36. Zalazar L, Pagola P, Miró MV, Churio MS, Cerletti M, Martínez C, Iniesta-Cuerda M, Soler AJ, Cesari A, De Castro R. Bacterioruberin extracts from a genetically modified hyperpigmented Haloferax Volcanii strain: antioxidant activity and bioactive properties on sperm cells. Journal of Applied Microbiology. 2019;126(3):796-810. doi: 10.1111/jam.14160.

    37. Hou J, Cui HL. In vitro antioxidant, antihemolytic, and anticancer activity of the carotenoids from halophilic Archaea. Current Microbiology. 2018;75(3):266-71. doi: 10.1007/s00284-017-1374-z.

    38. Squillaci G, Parrella R, Carbone V, Minasi P, La Cara F, Morana A. Carotenoids from the extreme halophilic archaeon Haloterrigena Turkmenica: identification and antioxidant activity. Extremophiles. 2017;21(5):933-45. doi: 10.1007/s00792-017-0954-y.

    39. Mandelli F, Miranda VS, Rodrigues E, Mercadante AZ. Identification of carotenoids with high antioxidant capacity produced by extremophile microorganisms. World Journal of Microbiology and Biotechnology. 2012;28(4):1781-90. doi: 10.1007/s11274-011-0993-y.

    40. Fariq A, Yasmin A, Jamil M. Production, characterization and antimicrobial activities of bio-pigments by Aquisalibacillus elongatus MB592, Salinicoccus sesuvii MB597, and Halomonas aquamarina MB598 isolated from Khewra salt range, Pakistan. Extremophiles. 2019;23(4):435-49. doi: 10.1007/s00792-019-01095-7.

    41. Hegazy GE, Abu-Serie MM, Abo-Elela GM, Ghozlan H, Sabry SA, Soliman NA, Abdel-Fattah YR. In vitro dual (anticancer and antiviral) activity of the carotenoids produced by haloalkaliphilic archaeon Natrialba sp. M6. Scientific Reports. 2020;10(1):5986. doi: 10.1038/s41598-020-62663-y.

    42. Prasad S, Gupta SC, Tyagi AK. Reactive Oxygen Species (ROS) and cancer: role of antioxidative nutraceuticals. Cancer Letters. 2017;387:95-105. doi: 10.1016/j.canlet.2016.03.042.

    43. Maiuolo J, Gliozzi M, Carresi C, Musolino V, Oppedisano F, Scarano F, Nucera S, Scicchitano M, Bosco F, Macri R, Ruga S, Cardamone A, Coppoletta A, Mollace A, Cognetti F, Mollace V. Nutraceuticals and cancer: potential for natural polyphenols. Nutrients. 2021;13(11):3834. doi: 10.3390/nu13113834.

    44. Milani A, Basirnejad M, Shahbazi S, Bolhassani A. Carotenoids: biochemistry, pharmacology and treatment. British Journal of Pharmacology. 2017;174(11):1290-324. doi: 10.1111/bph.13625.

    45. Lim JY, Wang XD. Mechanistic Understanding of ß-cryptoxanthin and lycopene in cancer prevention in animal models. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 2020;1865(11):158652. doi: 10.1016/j.bbalip.2020.158652.

    46. Martin LJ. Fucoxanthin and its metabolite fucoxanthinol in cancer prevention and treatment. Marine Drugs. 2015;13(8):4784-98. doi: 10.3390/md13084784.

    47. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA:A Cancer Journal for Clinicians. 2021;71(3):209-49. doi: 10.3322/caac.21660.

    48. Perou CM, Jeffrey SS, van de Rijn M, Rees CA, Eisen MB, Ross DT, Pergamenschikov A, Williams CF, Zhu SX, Lee JC, Lashkari D, Shalon D, Brown PO, Botstein D. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(16):9212-7. doi: 10.1073/pnas.96.16.9212.

    49. Reddy GM. Clinicopathological features of triple negative breast carcinoma. Journal of Clinical and Diagnostic Research for Doctors. 2017; 11(1):EC05-EC08. doi: 10.7860/JCDR/2017/21452.9187.

    50. El-Kenawi A, Ruffell B. Inflammation, ROS, and mutagenesis. Cancer Cell. 2017;32(6):727-9. doi: 10.1016/j.ccell.2017.11.015.

    51. Canli Ö, Nicolas AM, Gupta J, Finkelmeier F, Goncharova O, Pesic M, Neumann T, Horst D, Löwer M, Sahin U, Greten FR. Myeloid cell-derived reactive oxygen species induce epithelial mutagenesis. Cancer Cell. 2017;32(6):869-883.e5. doi: 10.1016/j.ccell.2017.11.004.

    52. Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative stress in cancer. Cancer Cell. 2020;38(2):167-97. doi: 10.1016/j.ccell.2020.06.001.

    53. Rose Li Y, Halliwill KD, Adams CJ, Iyer V, Riva L, Mamunur R, Jen KY, del Rosario R, Fredlund E, Hirst G, Alexandrov LB, Adams D, Balmain A. Mutational signatures in tumours induced by high and low energy radiation in Trp53 deficient mice. Nature Communications. 2020;11(1):394. doi: 10.1038/s41467-019-14261-4 54. Huang R, Chen H, Liang J, Li Y, Yang J, Luo C, Tang Y, Ding Y, Liu X, Yuan Q, Yu H, Ye Y, Xu W, Xie X. Dual role of Reactive Oxygen Species and their application in cancer therapy. Journal of Cancer. 2021;12(18):5543-61. doi: 10.7150/jca.54699.

    55. Yang Y, Yatsunami R, Ando A, Miyoko N, Fukui T, Takaichi S, Nakamura S. Complete biosynthetic pathway of the C50 carotenoid bacterioruberin from lycopene in the extremely halophilic Archaeon Haloarcula japonica. Metcalf WW, editor. Journal of Bacteriology. 2015;197(9):1614-23. doi: 10.1128/JB.02523-14.

    56. Falb M, Müller K, Königsmaier L, Oberwinkler T, Horn P, von Gronau S, Gonzalez O, Pfeiffer F, Bornberg-Bauer E, Oesterhelt D. Metabolism of halophilic Archaea. Extremophiles. 2008;12(2):177-96. doi: 10.1007/s00792-008-0138-x.

    57. Calegari-Santos R, Diogo RA, Fontana JD, Bonfim TMB. Carotenoid production by halophilic Archaea under different culture conditions. Curr Microbiol. 2016;72(5):641-51. doi: 10.1007/s00284-015-0974-8.

    58. Fang CJ, Ku KL, Lee MH, Su NW. Influence of nutritive factors on C50 carotenoids production by Haloferax mediterranei ATCC 33500 with two-stage cultivation. Bioresource Technology. 2010;101(16):6487-93. doi: 10.1016/j.biortech.2010.03.044.

    59. Montero-Lobato Z, Ramos-Merchante A, Fuentes J, Sayago A, Fernández-Recamales Á, Martínez-Espinosa R, Vega JM, Vílchez C, Garbayo I. Optimization of growth and carotenoid production by Haloferax mediterranei using Response Surface Methodology. Marine Drugs. 2018;16(10):372. doi: 10.3390/md16100372.

    60. Hamidi M. Optimization of total carotenoid production by Halorubrum sp. TBZ126 using Response Surface Methodology. Journal of Microbial and Biochemical Technology. 2014;06(05). doi: 10.4172/1948-5948.1000158 61. Abbes M, Baati H, Guermazi S, Messina C, Santulli A, Gharsallah N, Ammar E. Biological properties of carotenoids extracted from Halobacterium halobium isolated from a Tunisian solar saltern. BMC Complementary and Alternative Medicine. 2013;13(1):255. doi: 10.1186/1472-6882-13-255.

    62. Patel GB, Sprott GD. Archaeobacterial ether lipid liposomes (archaeosomes) as novel vaccine and drug delivery systems. Critical Reviews in Biotechnology. 1999;19(4):317-57. doi: 10.1080/0738-859991229170.

    63. Cánovas V, Garcia-Chumillas S, Monzó F, Simó-Cabrera L, Fernández-Ayuso C, Pire C, Martínez-Espinosa RM. Analysis of polyhydroxyalkanoates granules in Haloferax mediterranei by Double-Fluorescence Staining with Nile Red and SYBR Green by confocal fluorescence microscopy. Polymers. 2021;13(10):1582. doi: 10.3390/polym13101582.

    64. Simó-Cabrera L, García-Chumillas S, Hagagy N, Saddiq A, Tag H, Selim S, AbdElgawad H, Arribas-Agüero A, Monzó-Sánchez F, Cánovas V, Pire C, Martínez-Espinosa RM. Haloarchaea as cell factories to produce bioplastics. Marine Drugs. 2021;19(3):159. doi: 10.3390/md19030159.

    65. Fernandez-Castillo R, Rodriguez-Valera F, Gonzalez-Ramos J, Ruiz-Berraquero F. Accumulation of poly (ß-hydroxybutyrate) by Halobacteria. Applied and Environmental Microbiology. 1986;51(1):214-6. doi: 10.1128/aem.51.1.214-216.1986.

    66. Amoozegar MA, Siroosi M, Atashgahi S, Smidt H, Ventosa A. Systematics of Haloarchaea and biotechnological potential of their hydrolytic enzymes. Microbiology. 2017;163(5):623-45. doi: 10.1099/mic.0.000463.

    67. Kumar V, Singh B, van Belkum MJ, Diep DB, Chikindas ML, Ermakov AM, Tiware SK. Halocins, natural antimicrobials of archaea: exotic or special or both. Biotechnology Advances. 2021;53:107834. doi: 10.1016/j.biotechadv.2021.107834 68. Chen S, Sun S, Wang R, Feng H, Xiang H. Halolysin R4 of Haloferax mediterranei confers its host antagonistic and defensive activities. Applied and Environmental Microbiology. 2021;AEM.02889-20. doi: 10.1128/AEM.02889-20.

    69. Churio MS, Cerletti M, De Castro RE. Carotenoids from Haloarchaea: extraction, fractionation, and characterization. Methods in Molecular Biology. 2022;2522:331-43. doi: 10.1007/978-1-0716-2445-6_21.

    70. Koller M, Rittmann SKMR. Haloarchaea as emerging big players in future polyhydroxyalkanoate bioproduction: review of trends and perspectives. Current Research in Biotechnology. 2022;4:377-91. doi: 10.1016/j.crbiot.2022.09.002 71. Schiraldi C, Giuliano M, De Rosa M. Perspectives on biotechnological applications of Archaea. Archaea. 2002;1(2):75-86. doi: 10.1155/2002/436561.

    72. Lazrak T, Wolff G, Albrecht AM, Nakatani Y, Ourisson G, Kates M. Bacterioruberins Reinforce reconstituted Halobacterium lipid membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1988;939(1):160-2. doi: 10.1016/0005-2736(88)90057-0 73. Chen CW, Hsu S hui, Lin MT, Hsu Y hui. Mass Production of C50 carotenoids by Haloferax mediterranei in using extruded rice bran and starch under optimal conductivity of brined medium. Bioprocess and Biosystems Engineering. 2015;38(12):2361-7. doi: 10.1007/s00449-015-1471-y.

    74. Flegler A, Lipski A. The C50 carotenoid bacterioruberin regulates membrane fluidity in pink-pigmented Arthrobacter species. Archives of Microbiology. 2021;204(1):70. doi: 10.1007/s00203-021-02719-3.

    75. Asker D, Ohta Y. Production of canthaxanthin by extremely halophilic Bacteria. Journal of Bioscience and Bioengineering. 1999;88(6):617-21. doi: 10.1016/s1389-1723(00)87089-9.

    76. Asker D, Ohta Y. Production of canthaxanthin by Haloferax alexandrinus under non-aseptic conditions and a simple, rapid method for its extraction. Applied Microbiology and Biotechnology. 2002;58(6):743-50. doi: 10.1007/s00253-002-0967-y.

    77. Bolhuis H, Palm P, Wende A, Falb M, Rampp M, Rodriguez-Valera F, Pfeiffer F, Oesterhelt D. The genome of the square archaeon Haloquadratum walsbyi: Life at the limits of water activity. BMC Genomics. 2006;7(1):169. doi: 10.1186/1471-2164-7-169.

    78. Grivard A, Goubet I, Duarte Filho LM de S, Thiéry V, Chevalier S, de Oliveira-Junior RG, El Aouad N, da Silva Almeida JRG, Sitarek P, Quintans-Junior LJ, Grougnet R, Agogué H, Picot L. Archaea carotenoids: natural pigments with unexplored innovative potential. Marine Drugs. 2022;20(8):524. doi: 10.3390/md20080524.

    79. Sharma AK, Walsh DA, Bapteste E, Rodriguez-Valera F, Ford Doolittle W, Papke RT. Evolution of rhodopsin ion pumps in Haloarchaea. BMC Evolutionary Biology. 2007;7(1):79. doi: 10.1186/1471-2148-7-79.

    80. Ligusa H, Yoshida Y, Hasunuma K. Oxygen and hydrogen peroxide enhance light-induced carotenoid synthesis in Neurospora crassa. FEBS Letters. 2005;579(18):4012-6. doi: 10.1016/j.febslet.2005.06.014.

    81. Zhang J, Li QR, Zhang MH, You Y, Wang Y, Wang YH. Enhancement of carotenoid biosynthesis in Phaffia rhodozyma PR106 under stress conditions. Bioscience, Biotechnology, and Biochemistry. 2019;83(12):2375-85. doi: 10.1080/09168451.2019.1650633.

    82. Jeong JC, Lee IY, Kim SW, Park YH. Stimulation of ß-carotene synthesis by hydrogen peroxide in Blakeslea trispora. Biotechnology Letters. 1999;21(8):683-6. doi: 10.1023/A:1005507630470 83. Vázquez-Madrigal AS, Barbachano-Torres A, Arellano-Plaza M, Kirchmayr MR, Finore I, Poli A, Nicolaus B, De la Torre-Zavala S, Camacho-Ruiz RM. effect of carbon sources in carotenoid production from Haloarcula sp. M1, Halolamina sp. M3 and Halorubrum sp. M5, halophilic archaea isolated from Sonora Saltern, Mexico. Microorganisms. 2021;9(5):1096. doi: 10.3390/microorganisms9051096.

    84. Flores N, Hoyos S, Venegas M, Galetovi A, Zúñiga LM, Fábrega F, Paredes B, Salazar-Ardiles C, Vilo C, Ascaso C, Wierzchos J, Sourza-Egipsy V, Araya JE, Batista-García RA, Gómez-Silva B. Haloterrigena sp. Strain SGH1, a bacterioruberin-rich, perchlorate-tolerant halophilic archaeon isolated from halite microbial communities, Atacama desert, Chile. Frontiers in Microbiology. 2020;11:324. doi: 10.3389/fmicb.2020.00324 85. Naziri D, Hamidi M, Hassanzadeh S, Tarhriz V, Maleki Zanjani B, Nazemyieh H, Hejazi MA, Hejazi MS. Analysis of carotenoid production by Halorubrum sp. TBZ126; an extremely halophilic archeon from Urmia Lake. Advanced Pharmaceutical Bulletin; 2014; 4(1):61-67. doi: 10.5681/apb.2014.010.

    86. Hu CC, Lin JT, Lu FJ, Chou FP, Yang DJ. Determination of carotenoids in Dunaliella salina cultivated in Taiwan and antioxidant capacity of the algal carotenoid extract. Food Chemistry. 2008;109(2):439-46. doi: 10.1016/j.foodchem.2007.12.043.

    87. Singh P, Baranwal M, Reddy SM. Antioxidant and cytotoxic activity of carotenes produced by Dunaliella salina under stress. Pharmaceutical Biology. 2016;54(10):2269-75. doi: 10.3109/13880209.2016.1153660.

    88. Bellahcen TO, AAmiri A, Touam I, Hmimid F, Amrani AE, Cherif A, Cherki M. evaluation of Moroccan microalgae: Spirulina platensis as a potential source of natural antioxidants. Journal of Complementary and Integrative Medicine. 2020;17(3):20190036. doi: 10.1515/jcim-2019-0036.

    89. Rani V, Deep G, Singh RK, Palle K, Yadav UCS. Oxidative stress and metabolic disorders: pathogenesis and therapeutic strategies. Life Sciences. 2016;148:183-93. doi: 10.1016/j.lfs.2016.02.002.

    90. Karam BS, Chavez-Moreno A, Koh W, Akar JG, Akar FG. Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovascular Diabetology. 2017;16(1):120. doi: 10.1186/s12933-017-0604-9.

    91. Phan MAT, Wang J, Tang J, Lee YZ, Ng K. Evaluation of glucosidase inhibition potential of some flavonoids from Epimedium brevicornum. LWT - Food Science and Technology. 2013;53(2):492-8. doi: 10.1016/j.lwt.2013.04.002 92. Zhang L, Tu Z cai, Yuan T, Wang H, Xie X, Fu ZF. Antioxidants and glucosidase inhibitors from Ipomoea batatas leaves identified by bioassay-guided approach and structure-activity relationships. Food Chemistry. 2016;208:61-7. doi: 10.1016/j.foodchem.2016.03.079.

    93. Chen G, Guo M. Rapid Screening for Glucosidase inhibitors from Gymnema sylvestre by affinity ultrafiltration HPLC-MS. Frontiers in Pharmacology. 2017;8:228. doi: 10.3389/fphar.2017.00228 94. Hong HC, Li SL, Zhang XQ, Ye WC, Zhang QW. Flavonoids with-glucosidase inhibitory activities and their contents in the leaves of Morus atropurpurea. Chinese Medicine. 2013;8(1):19. doi: 10.1186/1749-8546-8-19.

    95. Abbas G, Al Harrasi A, Hussain H, Hamaed A, Supuran CT. The management of diabetes mellitus-imperative role of natural products against dipeptidyl peptidase-4, glucosidase and sodium-dependent glucose co-transporter 2 (SGLT2). Bioorganic Chemistry. 2019;86:305-15. doi: 10.1016/j.bioorg.2019.02.009.

    96. Li J, Chi G, Wang L, Wang F, He S. Isolation, identification, and inhibitory enzyme activity of phenolic substances present in Spirulina. Journal of Food Biochemistry. 2020;44(9). doi: 10.1111/jfbc.13356 97. Prabakaran G, Sampathkumar P, Kavisri M, Moovendhan M. Extraction and characterization of phycocyanin from Spirulina platensis and evaluation of its anticancer, antidiabetic and antiinflammatory effect. International Journal of Biological Macromolecules. 2020;153:256-63. doi: 10.1016/j.ijbiomac.2020.03.009.

    98. Hwang PA, Hung YL, Tsai YK, Chien SY, Kong ZL. The brown seaweed Sargassum hemiphyllum exhibits amylase and glucosidase inhibitory activity and enhances insulin release in vitro. Cytotechnology. 2015;67(4):653-60. doi: 10.1007/s10616-014-9745-9.

    99. Lowe ME. Structure and function of pancreatic lipase and colipase. Annual Review of Nutrition. 1997;17(1):141-58. doi: 10.1146/annurev.nutr.17.1.141.

    100. Lenaz G. Mitochondria and reactive oxygen species. which role in physiology and pathology En: Scatena R, Bottoni P, Giardina B, editores. Advances in Experimental Medicine and Biology. Dordrecht: Springer Netherlands; 2012;942:93-136. doi: 10.1007/978-94-007-2869-1_5.

    101. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA,Lickley LA, Rawlinson E, Sun P, Narod SA. Triple-negative breast cancer: clinical features and patterns of recurrence. Clinical Cancer Research. 2007;13(15):4429-34. doi: 10.1158/1078-0432.CCR-06-3045.

    102. Shin J, Song MH, Oh JW, Keum YS, Saini RK. Pro-oxidant actions of carotenoids in triggering apoptosis of cancer cells: a review of emerging evidence. Antioxidants. 2020;9(6):532. doi: 10.3390/antiox9060532.

    103. Xu J, Li Y, Hu H. Effects of lycopene on ovarian cancer cell line SKOV3 in vitro: suppressed proliferation and enhanced apoptosis. Molecular and Cellular Probes. 2019;46:101419. doi: 10.1016/j.mcp.2019.07.002.

    104. Chang MX, Xiong F. Astaxanthin and its effects in inflammatory responses and inflammation-associated diseases: recent advances and future directions. Molecules. 2020;25(22):5342. doi: 10.3390/molecules25225342.

    105. Gong X, Smith J, Swanson H, Rubin L. Carotenoid lutein selectively inhibits breast cancer cell growth and potentiates the effect of chemotherapeutic agents through ROS-mediated mechanisms. Molecules. 2018;23(4):905. doi: 10.3390/molecules23040905.

    106. Bushue N, Wan YJY. Retinoid pathway and cancer therapeutics. Advanced Drug Delivery Reviews. 2010;62(13):1285-98. doi: 10.1016/j.addr.2010.07.003.

    107. Wang Y, Gapstur SM, Gaudet MM, Furtado JD, Campos H, McCullough ML. Plasma Carotenoids and breast cancer risk in the cancer prevention study II Nutrition Cohort. Cancer Causes and Control. 2015;26(9):1233-44. doi: 10.1007/s10552-015-0614-4.

    108. Hu F, Wang Yi B, Zhang W, Liang J, Lin C, Li D, Wang F, Pand D, Zhao Y. Carotenoids and breast cancer risk: a meta-analysis and meta-regression. Breast Cancer Research and Treatment. 2012;131(1):239-53. doi: 10.1007/s10549-011-1723-8.

    109. Saini RK, Keum YS, Daglia M, Rengasamy KR. Dietary carotenoids in cancer chemoprevention and chemotherapy: a review of emerging evidence. Pharmacological Research. 2020;157:104830. doi: 10.1016/j.phrs.2020.104830.

    110. Yu N, Su X, Wang Z, Dai B, Kang J. Association of dietary vitamin A and ß-carotene intake with the risk of lung cancer: A Meta-Analysis of 19 Publications. Nutrients. 2015;7(11):9309-24. doi: 10.3390/nu7115463.

    111. Hamidi H, Lilja J, Ivaska J. Using xCELLigence RTCA instrument to measure cell adhesion. Bio-Protocol. 2017;7(24):e2646. doi: 10.21769/BioProtoc.2646.

    112. Ho Y. Study on the hepatoprotection of Antrodia cinnamomea and anti-hepatoma activities of ethanolic extracts from hops and Haloferax mediterranei. 2007.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus