Las fuentes de energía renovable (ER) permiten una alta disgregación, por lo que hacen posible generar la energía que se utilizará en el mismo sitio de su aprovechamiento. Esto favorece un cambio en la estructura de las redes eléctricas, permitiendo pasar de un esquema de generación centralizado a un esquema distribuido. Sin embargo, las fuentes de ER son altamente dependientes de las condiciones medioambientales como la radiación solar, la nubosidad, el viento, entre otros, por lo que lograr un sistema de generación basado en energías renovables es un reto en la actualidad. Los sistemas de generación que integran fuentes renovables tienen que ser capaces de establecer estrategias de control y gestión de la energía que para hacer un uso eficiente de ella e intentar cubrir la demanda de energía de forma óptima al combinar más de un tipo de fuente y sistema de almacenamiento, siendo posible operar de manera aislada o conectada a la red eléctrica. En la actualidad es de interés el estudio, desarrollo e implementación de sistemas gestores de la energía (SGE) para microrredes eléctricas híbridas, que permitan aumentar su eficiencia, fiabilidad, y disminuir los costes de instalación, operación y mantenimiento. Diversos estudios de investigación han probado múltiples estrategias, desde SGE basados en reglas, algoritmos comparativos, controladores clásicos, y en años recientes, la integración de algoritmos de optimización bio-inspirados e inteligencia artificial. Estos algoritmos han mostrado ser una alternativa interesante a las técnicas clásicas para la solución de problemas de optimización y control en diversos problemas de ingeniería, su aplicación en el ámbito de las microrredes sigue en estudio y en ello se basa este trabajo de investigación. Los algoritmos bio-inspirados se fundamentan en imitar matemáticamente los mecanismos y estrategias que la naturaleza ha implementado a lo largo de millones de años para lograr un equilibrio en su funcionamiento, por ejemplo, imitando el cómo las aves vuelan en parvada buscando alimento, o como las hormigas y los lobos siguen patrones para la búsqueda de su alimento, o como las especies llevan a cabo mecanismos de cruce con el objetivo de mejorar su raza haciéndolas una especie optimizada y mejorando su supervivencia. Por tanto, se puede hacer una analogía con los sistemas artificiales para la mejora de controladores y diseño de sistemas en microrredes eléctricas.
En este trabajo de investigación se muestra el modelo y desarrollo de un sistema de gestión óptima para una microrred empleando algoritmos bio-inspirados con el objetivo de mejorar su desempeño, partiendo desde el control primario, con la mejora de los convertidores de potencia, hasta el control terciario con las transacciones energéticas de la microrred. Se exploran diversos algoritmos, evaluando su desempeño. Los resultados para las diferentes etapas de esta investigación se encuentran plasmados en cuatro diferentes publicaciones científicas que se detallan en el Capítulo 2 del presente documento, donde se explica la metodología y los principales resultados y hallazgos para cada una de ellas.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados