Hepatic ischemia-reperfusion (I/R) injury (IRI) is a major cause of mortality and morbidity in liver resection and liver transplantation. During the hypoxia, the liver remains without oxygen supply, shifting its metabolism and stopping the ATP synthesis. Paradoxically, the restoration of oxygen flow causes the most damage with an activation of the immune system that will generate a burst of reactive species of oxygen (ROS) that will cause cell and tissue damage. Cyclooxygenase-2 (COX-2) is a key enzyme in prostaglandin biosynthesis and its importance in IRI is controversial. PGE2, prostaglandin E2, is the main product of COX-2, and is mainly involved in mediating pathological processes such as inflammation, fever and pain. While the use of NSAIDs, specific COX inhibitors, points to a beneficial effect in the resolution of the inflammatory process, several studies support the idea of an anti-inflammatory role of COX-2. In fact, previous studies have shown that COX-2 overexpression in hepatocytes protects mice from apoptosis and cellular stress, as well as reducing the inflammatory response, in different liver disease models.
In this PhD thesis, a hepatocyte-specific COX-2 transgenic mouse (h-COX-2 Tg) was used to elucidate the role and involvement of COX-2 in IRI. Wild type (Wt) and h-COX-2 Tg animals were subjected to 90 min of ischemia, followed by 4 or 24 h of reperfusion. Comparing h-COX-2 Tg animals with their Wt littermates, cellular and tissue damage resulting from IRI is attenuated. Among these pathways, the inflammatory cascade is less activated, with less pro-inflammatory cytokine release, less hepatic recruitment and neutrophil infiltration. Necrosis and apoptosis pathways are also attenuated such as reduced endoplasmic reticulum stress, and increased autophagy. The antioxidant response appears to be enhanced in the context of COX-2 overexpression and total ROS production is also lower, contributing to less tissue damage. When Wt animals are subjected to preconditioning (PC), endogenous COX-2 is induced at higher levels than without PC, and these livers show less damage, attenuated inflammation, and an enhanced antioxidant response. Furthermore, the role of COX-2 in this observed protection has been shown to be specific, as its inhibition with DFU, reverses the observed effects, and matched the damage caused to Wt animals. Mitochondria are central players in the pathophysiology of IRI. In this regard, mitochondrial function is preserved in COX-2-overexpressing livers, as can be demonstrated by a conserved mitochondrial membrane potential and a preserved respiratory rate. These results can be explained by a stabilisation of mitochondrial cristae, invaginations of the inner mitochondrial membrane (IMM) that maintained through interactions of various isoforms of OPA1. Its processing is mediated by proteases, such as OMA1, which acts under certain stimuli. In h-COX-2 Tg mice, there is a reduced OPA1 processing that correlates with attenuated OMA1 activity, showing a stabilisation of cristae in the context of COX-2 overexpression after I/R. On the other hand, a retrospective study was conducted in patients who had undergone liver transplantation. In this part of the study, PGE2 levels were analysed and correlated with liver functions after transplantation. This analysis shows that the presence of PGE2 in the plasma of recipients correlates with a better prognosis, while lower PGE2 levels are associated with early graft dysfunction.
All these results present COX-2 as a new player in liver protection after I/R, showing an anti-inflammatory and antioxidant role, as well as reducing mitochondrial damage, cell stress and cell death. Furthermore, it is shown how COX-2-derived prostaglandins under physiological conditions can play a protective role in cases of liver transplant.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados