Ayuda
Ir al contenido

Dialnet


Métodos iterativos para la resolución de problemas aplicados transformados a sistemas no lineales

  • Autores: Fabricio Alfredo Cevallos Alarcón
  • Directores de la Tesis: Eulalia Martínez Molada (dir. tes.), José Luis Hueso Pagoaga (dir. tes.)
  • Lectura: En la Universitat Politècnica de València ( España ) en 2023
  • Idioma: español
  • Tribunal Calificador de la Tesis: Francesc Aràndiga Llaudes (presid.), Alicia Cordero Barbero (secret.), Cristina Chiralt Monleón (voc.)
  • Programa de doctorado: Programa de Doctorado en Matemáticas por la Universitat de València (Estudi General) y la Universitat Politècnica de València
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: RiuNet
  • Resumen
    • La resolución de ecuaciones y sistemas no lineales es un tema de gran interés teórico-práctico, pues muchos modelos matemáticos de la ciencia o de la industria se expresan mediante sistemas no lineales o ecuaciones diferenciales o integrales que, mediante técnicas de discretización, dan lugar a dichos sistemas. Dado que generalmente es difícil, si no imposible, resolver analíticamente las ecuaciones no lineales, la herramienta más extendida son los métodos iterativos, que tratan de obtener aproximaciones cada vez más precisas de las soluciones partiendo de determinadas estimaciones iniciales. Existe una variada literatura sobre los métodos iterativos para resolver ecuaciones y sistemas, que abarca conceptos como, eficiencia, optimalidad, estabilidad, entre otros importantes temas. En este estudio obtenemos nuevos métodos iterativos que mejoran algunos conocidos en términos de orden o eficiencia, es decir que obtienen mejores aproximaciones con menor coste computacional. La convergencia de los métodos iterativos suele estudiarse desde el punto de vista local. Esto significa que se obtienen resultados de convergencia imponiendo condiciones a la ecuación en un entorno de la solución. Obviamente, estos resultados no son aplicables si no la conocemos. Otro punto de vista, que abordamos en este trabajo, es el estudio semilocal que, imponiendo condiciones en un entorno de la estimación inicial, proporciona un entorno de dicho punto que contiene la solución y garantiza la convergencia del método iterativo a la misma. Finalmente, desde un punto de vista global, estudiamos el comportamiento de los métodos iterativos en función de la estimación inicial, mediante el estudio de la dinámica de las funciones racionales asociadas a estos métodos. La presente memoria recoge los resultados de varios artículos de nuestra autoría, en los que se tratan distintos aspectos de la materia, como son, las peculiaridades de la convergencia en el caso de raíces múltiples, la posibilidad de aumentar el orden de un método óptimo de orden cuatro a orden ocho, manteniendo la optimalidad en el caso de raíces múltiples, el estudio de la convergencia semilocal en un método de alto orden, así como el comportamiento dinámico de algunos métodos iterativos.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno