Ayuda
Ir al contenido

Dialnet


Advanced techniques for multipactor testing

  • Autores: Óscar Monerris Belda
  • Directores de la Tesis: Benito Gimeno Martínez (dir. tes.), Vicente Enrique Boria Esbert (dir. tes.)
  • Lectura: En la Universitat Politècnica de València ( España ) en 2023
  • Idioma: español
  • Tribunal Calificador de la Tesis: Jordi Gil Raga (presid.), Cesar Miquel España (secret.), Natanael Ayllon Rozas (voc.)
  • Programa de doctorado: Programa de Doctorado en Telecomunicación por la Universitat Politècnica de València
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: RiuNet
  • Resumen
    • In the recent past, there has been a proliferation of new satellite systems, especially the large constellations in the Low Earth Orbits (LEOs). Nearly all satellites now carry digital traffic with a variety of modulations and power levels. Not only that, the business model requires rapid deployment of satellites, putting enormous constraints for the suppliers of microwave payload hardware. A key risk area for such equipment remains the multipactor breakdown under moderate to high power levels. Owing to the inherent randomness of the multipactor phenomenon, customers tend to add extra design margins for the high power microwave components. This results in higher costs, bulkier devices and longer time for testing.

      Based on personal experience in multipactor testing, the prime motivator for the work described in the thesis has been to undertake a comprehensive review of this phenomenon and develop cutting edge multipactor test capabilities, providing means for the rapid multipactor testing under a variety of wide-band modulated signals.

      The thesis dissertation shows that analog and digital modulations have a significant impact in the multipactor threshold. The short and long-term multipactor regimes are also analyzed, regimes that, in some cases, have very different multipactor thresholds for the same critical gap.

      The need to reduce the microwave payload weight by using multicarriers in a single transponder provides an excellent option for designers. By routing several signals through the same device, the payload weight is dramatically reduced. Commercial solutions for multicarrier testing are not suitable because of the high power levels required. Several strategies to implement multipactor test benches with controllable parameters are presented. Results prove that the signal being fed to the device under tests is accurate and stable over time.

      Finally, a novel multipactor detection system is proposed to cope with multipactor detection when modulated and multicarrier signals of any bandwidth are used. This method has the same sensitivity as the well known microwave nulling for continuous wave signals and surpasses it for modulated signals. The digital signal processing used to detect the multipactor patterns provides a full autonomous detection method.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno