Ayuda
Ir al contenido

Dialnet


Valorization of bio-alcohols into added value chemicals

  • Autores: Giulia Balestra
  • Directores de la Tesis: Fabrizio Cavani (dir. tes.), José Manuel López Nieto (dir. tes.), Antonio Eduardo Palomares Gimeno (tut. tes.)
  • Lectura: En la Universitat Politècnica de València ( España ) en 2022
  • Idioma: inglés
  • Tribunal Calificador de la Tesis: Patricia Benito Martín (presid.), Luis Joaquín Martínez Triguero (secret.), Nicoletta Ravasio (voc.)
  • Programa de doctorado: Programa de Doctorado en Química Sostenible por la Universidad de Castilla-La Mancha; la Universidad de Extremadura; la Universidad Jaume I de Castellón; la Universitat de València (Estudi General) y la Universitat Politècnica de València
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: RiuNet
  • Resumen
    • español

      El presente trabajo de investigación está centrado en la valorización y la mejora del bioetanol, empleando catalizadores heterogéneos, en un reactor de flujo continuo a escala de laboratorio. En primer lugar, en los laboratorios del Departamento de Química Industrial de la Universidad de Bolonia (Unibo), se ha estudiado la conversión catalítica del etanol en fase gaseosa sobre catalizadores basados en hidroxiapatitas (HAP). Los ensayos catalíticos se llevaron a cabo alimentando un reactor de lecho fijo a escala de laboratorio, empleando el catalizador en forma de pellets y una mezcla de etanol/He, en el rango de temperatura de 300-600 ºC. El interés se focalizó en la formación de productos de alta condensación, con el fin de obtener una mezcla orgánica que pueda ser empleada como bio-combustible. Tras seleccionar las condiciones de reacción, se sintetizaron y probaron diferentes hidroxiapatitas con capacidad de intercambio iónico que poseen metales de transición (Fe, Cu) y metales alcalinotérreos (Sr) en su composición. Mientras que las HAP conteniendo metales de transición actúan esencialmente como catalizadores ácidos, produciendo principalmente el producto de la deshidratación del etanol, el etileno, el catalizador de Sr-HAP permite la formación de una mezcla de reacción compleja, la cual necesita de una mayor optimización para cumplir con los requisitos adecuados para su posterior empleo como biofuel. A continuación, en los laboratorios del Instituto de Tecnología Química (ITQ) de la Universidad Politécnica de Valencia (UPV), el estudio se centró en dos materiales catalíticos diferentes, el óxido de zirconio y la sepiolita, una arcilla natural abundante en España. Ambos materiales se han probados para la transformación de etanol, en el rango de temperatura de 300-450 ºC, empleando un reactor de lecho fijo a escala laboratorio, con el catalizador en forma de pellets, y usando una mezcla de etanol/N2. Los catalizadores con óxido de zirconio se prepararon mediante dos métodos diferentes, precipitación e hidrotermal, variando algunos de los parámetros de síntesis (pH, naturaleza de la base), y empleando algunos metales de transición como elementos dopantes (Ti, Y). La presencia de un elemento dopante en la estructura de la zirconia favorece la estabilización de las fases tetragonal y cúbica frente a fase monoclínica. Todas las muestras exhibieron un comportamiento ácido. Resulta interesante que la zirconia dopada con 5%mol de Ti exhibe un comportamiento catalítico diferente, produciendo el dietiléter como principal producto a 300ºC, mientras que los otros catalizadores producen principalmente etileno, ambos, productos de la deshidratación del etanol. Por otra parte, se ha estudiado el efecto de las propiedades ácido-base de la sepiolita, modificada con metales alcalinos (Na, K, Cs) y cargas de metal variables (2, 4, 5, 7, 14 wt%), y de las propiedades redox de la sepiolita, como soporte de CuO o NiO, sobre la conversión catalítica de etanol a n-butanol. Las sepiolitas tratadas térmicamente actúan principalmente como catalizadores ácidos, produciendo preferentemente productos de deshidratación del etanol (etileno y dietiléter). Mientras que la presencia de un metal de transición no favorece la producción de n-butanol, la presencia de un metal alcalino en el sistema catalítico parece ser crucial para la formación de n-butanol. Los mejores resultados en términos de actividad (conversión de etanol, 59%) y selectividad (30%) de n-butanol se han obtenido a 400 ºC y un tiempo de contacto, W/F, de 2 g/mL·s, con el catalizador basado en sepiolita calcinada a 500 ºC, y modificada con 7 wt% de cesio, mediante impregnación en fase acuosa.

    • English

      The present research work focused on the valorisation and upgrading of bio-ethanol over heterogeneous catalysts in a lab-scale continuous gas-flow system.

      Firstly, in the laboratories of the Department of Industrial Chemistry of the University of Bologna (Unibo), the catalytic ethanol gas-phase conversion was studied over hydroxyapatite (HAP) based catalysts. Catalytic tests have been carried out in the temperature range 300-600°C by feeding an ethanol/He mixture into a quartz lab-scale fixed bed reactor of pelletized catalyst. The focus was placed on enhancing the formation of higher condensation products in order to obtain an organic mixture with application as bio-fuel. After choosing the reaction conditions, ion-exchanged hydroxyapatite with transition metals (i.e., Fe, Cu) and alkaline earth metal (i.e., Sr) have been synthesized and tested. While the transition metal-exchanged HAP acted essentially as acid catalysts, yielding mainly the dehydration product of ethanol, ethylene, the Sr-HAP catalyst led to the formation of a complex reaction mixture the composition of which need further optimization in order to fill the requisite to be used as fuel-blend.

      Then, in the laboratories of the Institute of Chemical Technology (ITQ) of the Polytechnic University of Valencia (UPV), the study focused on two different catalytic materials, zirconium oxide and the natural clay sepiolite. Both the materials have been tested into the ethanol transformation carrying out the catalytic tests in the temperature range 300-450 °C by feeding an ethanol/N2 mixture into a quartz lab-scale fixed bed reactor of pelletized catalyst.

      Zirconium-oxide based catalysts have been prepared through two different methods, precipitation and hydrothermal, by varying some synthetic parameters (i.e., pH, the nature of the base) and by adding a transition metal as dopant agent (i.e., Ti and Y). The presence of a dopant into the zirconia structure favoured the stabilization of the tetragonal or cubic phase against the monoclinic one. All samples exhibited acidic behaviour. Interestingly, 5%mol Ti-doped zirconia exhibited a different catalytic behaviour yielding diethyl ether as major product at 300°C, while all the others samples produced mainly ethylene, both dehydration products of ethanol.

      The effect of acid-base properties of sepiolite, using alkali metals (i.e., Na, K, Cs) with different metal loading (i.e., 2, 4, 5, 7, 14 wt%) as promoters, and of the redox properties of sepiolite-supported CuO or NiO, on the catalytic conversion of ethanol into n-butanol has been investigated. Thermal treated sepiolite samples mainly acted as acid catalyst, yielding preferentially the dehydration products of ethanol (ethylene and diethyl ether). While the presence of a transition metal did not favour n-butanol production, the presence of an alkali metal into the catalytic system appeared to be crucial for n-butanol formation. Best results in terms of activity (ethanol conversion, 59%) and n-butanol selectivity (30%) where obtained at 400ºC and a contact time, W/F, of 2 g/mL·s over the catalyst consisting of sepiolite calcined at 500ºC modified with 7 wt% of cesium.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno