Ayuda
Ir al contenido

Dialnet


Development of hydrated calcium silicates by hydrothermal treatments

  • Autores: Felipe Martí Montava
  • Directores de la Tesis: David García Sanoguera (dir. tes.), O. Fenollar (dir. tes.)
  • Lectura: En la Universitat Politècnica de València ( España ) en 2023
  • Idioma: español
  • Tribunal Calificador de la Tesis: Juan López Martínez (presid.), Antonio Perejón Pazo (secret.), Oras Abdul Kaber (voc.)
  • Programa de doctorado: Programa de Doctorado en Ingeniería y Producción Industrial por la Universitat Politècnica de València
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: RiuNet
  • Resumen
    • In the calcium silicate production process in Promat (Tisselt, Belgium), xonotlite and tobermorite as main mineral phases, are obtained by reacting a mixture of calcium oxide and crystalline silica in an aqueous medium with a CaO/ SiO2 close to 1, and under hydrothermal conditions, at a temperature of 200°C and a vapor pressure of 17 bar.

      In this industrial doctorate project, it is intended to achieve three main objectives: 1. Develop a new technology to obtain hydrated calcium silicates, through the initial synthesis of C-S-H gel to control the density of the final product. This is a process that is used by some of Promat's competitors and that we refer to in this thesis as 'Gel Tank' technology. It is also intended to carry out an in-depth study of the key parameters that influence the process. In addition, it is intended to investigate the feasibility of producing hydrated calcium silicates with different densities and compare their properties with those obtained by existing technologies. With the use of this new technology, the idea is to use less water than in conventional processes, and thereby reduce energy expenditure, minimizing the environmental impact.

      2. Expand the knowledge of the technology based on hydrothermal treatment by means of agitation and investigate the possibility of improving the endothermic character of the materials obtained through this technology.

      3. Develop a new generation of products free of residual quartz content (<0.1% by weight) through the use of the so-called "double autoclaving" technology.

      In the first part of this thesis, the research study of Gel Tank technology at a laboratory scale has shown that hydrated calcium silicates can be obtained for a range of densities that vary from 280 Kg/m3 to 700 Kg/m3, using Optimal amounts of C-S-H gel synthesized under specific conditions. And good quality products can be obtained with a lower water/solid ratio (and therefore less energy dependence) than in the case of existing technologies. In the second part of this thesis, the different reaction mechanisms between different sources of silica have been investigated using different classical analytical techniques to characterize the intermediate products and other more advanced techniques. This allowed to partially explain the hydrothermal reaction mechanisms for the synthesis of xonotlite and tobermorite crystals. On the other hand, several inorganic additives of an endothermic nature have been tested in the matrix of products made in Promat, mostly from xonotlite particles. And with this, other alternatives have been proposed for fire protection and thermal insulation in different applications (160ºC - endotherm decomposition temperature to be used in partitions or compartments, 380ºC - endotherm decomposition temperature to protect concrete structures and 500ºC - endotherm decomposition temperature in the case of protection of metallic steel structures). And in the last part, an alternative to the reference product that does not contain residual quartz in its matrix has been sought, using technology based on double hydrothermal treatment. The products obtained have been developed after applying variations in the standard formulation, and have given rise to mechanical and thermal properties similar to existing products that contain residual quartz. These new products have residual quartz contents below 0.1% by weight.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno