Ayuda
Ir al contenido

Dialnet


Viabilidad del uso de FPGA`s en redes de sensores inalámbricas

  • Autores: Oscar Osvaldo Ordaz Garcia
  • Directores de la Tesis: Francisco José Bellido Outeiriño (dir. tes.), José Guadalupe Arceo Olague (codir. tes.), Manuel A. Ortiz López (codir. tes.)
  • Lectura: En la Universidad de Córdoba (ESP) ( España ) en 2022
  • Idioma: español
  • Tribunal Calificador de la Tesis: Daniel Díaz Sánchez (presid.), José María Flores Arias (secret.), Hamurabi Gamboa Rosales (voc.)
  • Programa de doctorado: Programa de Doctorado en Computación Avanzada, Energía y Plasmas por la Universidad de Córdoba
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: Helvia
  • Resumen
    • Dentro del contexto del proyecto de tesis planteado, se aborda el problema del control y las comunicaciones con las luminarias en los sistemas inteligentes de alumbrado público. En los trabajos reportados en la literatura sobre este tema, se encuentra el problema particular de la implementación de protocolos digitales de comunicaciones con las luminarias y, especialmente, en la implementación del protocolo Digital Addressable Lighting Interface (DALI) en redes de sensores inalámbricos. Desafortunadamente, los microcontroladores que habitualmente se emplean en los nodos de sensores inalámbricos, no integran periféricos para este tipo de protocolos, por lo que suelen implementarse por software. Un punto de oportunidad es implementar este tipo de protocolos en hardware (HW) mediante una Field Programmable Gate Array (FPGA) y de esta forma demostrar su viabilidad en nodos de sensores inalámbricos.

      La motivación de este trabajo es mostrar que, en algunas aplicaciones, como son las redes inalámbricas del alumbrado público, las FPGAs no solo se pueden utilizar como un componente más del nodo para computación de alto rendimiento, sino también para realizar otras tareas relacionadas con la creación de periféricos e interfaz a periféricos. Se demuestra así, que la utilización de FPGAs, de bajo coste y consumo de potencia, se pueden utilizar como parte del nodo inalámbrico al igual que se han venido utilizando en cualquier otro sistema electrónico.

      En esta tesis se presenta una solución para implementar por HW el protocolo DALI para controlar sistemas de iluminación inteligente. La novedad de este trabajo es la descripción portable del protocolo DALI implementado en forma de un bridge de comunicaciones en una FPGA de bajo coste, bajo consumo de potencia y poca cantidad de recursos lógicos, para ser embebida en un nodo sensor inalámbrico. El protocolo se ha descrito en lenguaje VHDL siguiendo los estándares 1076-93 y 1076.3-97.

      Se realiza una descripción de los conceptos básicos de las redes inalámbricas de sensores y la trascendencia que han tenido en los sistemas de iluminación pública. Por otra parte, se exponen las características generales de las FPGAs, destacando las ventajas que se obtienen para la implementación de determinadas funciones en hardware.

      Se describe el protocolo DALI, el diseño del bridge y de la interfaz DALI, tomando en cuenta las funcionalidades y características del protocolo DALI para el control de luminarias. Se analizó la comunicación entre el host, el bridge DALI y la interfaz DALI, con el objetivo de conseguir una descripción del bridge eficiente y portable de forma que se pudiese implementar en cualquier FPGA.

      Se muestran los resultados de la implementación del bridge DALI en la FPGA embebida en un nodo sensor inalámbrico para control de luminarias que utilizan protocolo DALI en aplicaciones de sistemas de alumbrado público inteligente. También se resaltan los aspectos relevantes de los diferentes componentes del nodo sensor inalámbrico. La síntesis fue realizada en la plataforma iCEcube2 de Lattice y la implementación se realizó en una FPGA iCE40HX1K-VQ100, obteniendo la cantidad de recursos lógicos y bloques de enrutamiento utilizados, la estimación del consumo de potencia y la frecuencia máxima de funcionamiento.

      Debido al gran desarrollo y evolución que han experimentado las FPGAs, éstas son una gran alternativa para desarrollar sistemas inteligentes que requieren de una carga elevada de procesamiento computacional y/o implementación de interfaces inteligentes. Desafortunadamente, no es muy común utilizar FPGAs en nodos inalámbricos, a pesar de su uso tan extendido en otros sistemas electrónicos. Las contribuciones de este trabajo demuestran la viabilidad de la utilización de FPGAs en redes de sensores inalámbricos, que en este caso se utilizan para implementar un bridge DALI y resolver el problema de la interfaz de comunicación.

      Se ha demostrado que es posible utilizar de forma eficiente FPGAs en un nodo sensor inalámbrico para reducir la carga computacional del microcontrolador y liberar algunos de sus recursos hardware, lo cual ha permitido un aumento en la confiabilidad del nodo en el contexto de las redes inalámbricas. Además, implementar por HW protocolos o procesos, que históricamente se han realizado por software, permitió comprobar que las ventajas de las FPGAs, como flexibilidad, capacidad para ejecución en paralelo, procesamiento en tiempo real y computación de alto rendimiento, evita los problemas de temporización para generar la codificación y decodificación Manchester que utiliza el protocolo DALI.

      1. Forecast. Cisco Visual Networking Index: Global Mobile Data Traffic Update, 2017–2022. Available online: https://davidellis.ca/wp-content/uploads/2019/12/cisco-vni-mobile-data-traffic-feb-2019.pdf 2019, (consultado el 15 de junio de 2020).

      2. Parrilla, L.; Castillo, E.; López-Ramos, J.A.; Álvarez-Bermejo, J.A.; García, A.; Morales, D.P. Unified Compact ECC-AES Co-Processor with Group-Key Support for IoT Devices in Wireless Sensor Networks. Sensors 2018, 18, 251, doi:10.3390/s18010251.

      3. Fernández Martínez, R.; Ordieres Meré, J.; Martínez de Pisón Ascacíbar, F.J.; González Marcos, A.; Alba Elías, F.; Lostado Lorza, R.; Pernía Espinoza, A.V. Redes inalámbricas de sensores: teoría y aplicación práctica, Grupo de Investigación EDMANS ed.; Universidad de La Rioja, Madrid, España: 2009.

      4. Lee, R.-G.; Lai, C.-C.; Chiang, S.-S.; Liu, H.-S.; Chen, C.-C.; Hsieh, G.-Y. Design and implementation of a mobile-care system over wireless sensor network for home healthcare applications. In Proceedings of 2006 International Conference of the IEEE Engineering in Medicine and Biology Society; pp. 6004-6007.

      5. Milenković, A.; Otto, C.; Jovanov, E. Wireless sensor networks for personal health monitoring: Issues and an implementation. Computer communications 2006, 29, 2521-2533, doi:10.1016/j.comcom.2006.02.011.

      6. Lau, S.P.; Merrett, G.V.; White, N.M. Energy-efficient street lighting through embedded adaptive intelligence. In Proceedings of 2013 International Conference on Advanced Logistics and Transport, Sousse, Tunisia, May 2013; pp. 53-58.

      7. Mahoor, M.; Hosseini, Z.S.; Khodaei, A.; Paaso, A.; Kushner, D. State-of-the-art in smart streetlight systems: a review. IET Smart Cities 2020, 2, 24-33, doi:10.1049/iet-smc.2019.0029.

      8. Higuera, J.; Hertog, W.; Perálvarez, M.; Polo, J.; Carreras, J. Smart lighting system ISO/IEC/IEEE 21451 compatible. IEEE sensors Journal 2015, 15, 2595-2602, doi:10.1109/JSEN.2015.2390262.

      9. Echelon. Corp.: Monitored outdoor lighting: Market, Challenges, Solutions and Next steps. In Document number: SMS33-7 – Version 1.2, Disponible en línea: http://www.stitcs.com/EN/LonWorks/StreetlightWhitepaper.pdf (consultado el 14 de Julio de 2021): 2007; pp 1-19.

      10. Martin-Arias, M.; Huerta-Medina, N.; Rico-Secades, M. Using wireless technologies in lighting smart grids. In Proceedings of 2013 International Conference on New Concepts in Smart Cities: Fostering Public and Private Alliances (SmartMILE), Gijon, Spain, December 2013; pp. 1-6.

      11. Lau, S.P.; Merrett, G.V.; Weddell, A.S.; White, N.M. A traffic-aware street lighting scheme for Smart Cities using autonomous networked sensors. Computers & Electrical Engineering 2015, 45, 192-207, doi:10.1016/j.compeleceng.2015.06.011.

      12. Merlino, G.; Bruneo, D.; Distefano, S.; Longo, F.; Puliafito, A.; Al-Anbuky, A. A smart city lighting case study on an openstack-powered infrastructure. Sensors 2015, 15, 16314-16335, doi:10.3390/s150716314.

      13. Ni, D.C.; Chen, P. Integration of wired and wireless lighting control systems for green energy managment. In Proceedings of 2017 International Conference on Mechanical, System and Control Engineering (ICMSC), St. Petersburg, Russia, May 2017; pp. 206-210.

      14. Haba, C.-G.; Breniuc, L.; Gălăţanu, C.-D.; Petrişor, D.; Herţanu, R. IoT System for Implementation of Connected Lighting. In Proceedings of 2019 11th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, Romania, May 2019; pp. 1-5.

      15. Zotos, N.; Pallis, E.; Stergiopoulos, C.; Anastasopoulos, K.; Bogdos, G.; Skianis, C. Case study of a dimmable outdoor lighting system with intelligent management and remote control. In Proceedings of 2012 International Conference on Telecommunications and Multimedia (TEMU), Chania, Greece, September 2012; pp. 43-48.

      16. Shahzad, G.; Yang, H.; Ahmad, A.W.; Lee, C. Energy-efficient intelligent street lighting system using traffic-adaptive control. IEEE Sensors Journal 2016, 16, 5397-5405, doi:10.1109/JSEN.2016.2557345.

      17. Wojnicki, I.; Komnata, K.; Kotulski, L. Comparative Study of Road Lighting Efficiency in the Context of CEN/TR 13201 2004 and 2014 Lighting Standards and Dynamic Control. Energies 2019, 12, 1524, doi:10.3390/en12081524.

      18. Lee, H.; Choi, C.-h.; Sung, M. Development of a dimming lighting control system using general illumination and location-awareness technology. Energies 2018, 11, 2999, doi:10.3390/en11112999.

      19. Park, H.; Park, J.; Kim, H.; Lee, S.Q.; Park, K.-H.; Paik, J. Hybrid Sensor Network-Based Indoor Surveillance System for Intrusion Detection. Symmetry 2018, 10, 181, doi:10.3390/sym10060181.

      20. Shlayan, N.; Challapali, K.; Cavalcanti, D.; Oliveira, T.; Yang, Y. A novel illuminance control strategy for roadway lighting based on greenshields macroscopic traffic model. IEEE Photonics Journal 2018, 10, 1-11, doi:10.1109/JPHOT.2017.2782801.

      21. Wielgosz, M.; Karwatowski, M. Mapping neural networks to FPGA-based IoT devices for ultra-low latency processing. Sensors 2019, 19, 2981, doi:10.3390/s19132981.

      22. International Electrotechnical Commission. IEC 60929:2011. AC and/or DC-supplied electronic control gear for tubular fluorescent lamps – Performance requirements., Disponible en línea: https://webstore.iec.ch/publication/3926 (consultado el 14 de julio de 2021).

      23. DALI. Standard. International Electrotechnical Commission IEC 62386 2020, Disponible en línea: https://www.digitalilluminationinterface.org/dali/standards.html (consultado el 14 de Julio de 2021).

      24. Husain, S. Digitally Addressable Lighting Interface (DALI) Communication. AN1465. Microchip Technology Inc. 2012, DS01465A, Disponible en línea: http://ww1.microchip.com/downloads/en/Appnotes/01465A.pdf (consultado el 20 de agosto de 2021).

      25. Fosler, R. The RS-232/DALI Bridge Interface. AN811. Microchip Technology Inc. 2004, DS00811A, Disponible en línea: http://ww1.microchip.com/downloads/en/Appnotes/00811a.pdf (consultado el 20 de agosto de 2021).

      26. Husain, S. DALI Control Gear AN1487. Microchip Technology Inc. 2012, 1, Disponible en línea: http://ww1.microchip.com/downloads/en/Appnotes/01487A.pdf (consultado el 5 de mayo de 2022).

      27. Bellido-Outeiriño, F.J.; Quiles-Latorre, F.J.; Moreno-Moreno, C.D.; Flores-Arias, J.M.; Moreno-García, I.; Ortiz-López, M. Streetlight control system based on wireless communication over DALI protocol. Sensors (Switzerland) 2016, 16, 597, doi:10.3390/s16050597.

      28. Cem Ünsalan, P.D.; Bora Tar, P.D. Digital System Design with FPGA: Implementation Using Verilog and VHDL; McGraw-Hill Education: New York, 2017.

      29. Taylor, B. State-of-the-Art Programmable Logic. In Designing with Xilinx® FPGAs, Springer, Cham: 2017; doi:10.1007/978-3-319-42438-5_1 pp. 1-15.

      30. Dello Sterpaio, L.; Marino, A.; Nannipieri, P.; Dinelli, G.; Davalle, D.; Fanucci, L. A Complete EGSE Solution for the SpaceWire and SpaceFibre Protocol Based on the PXI Industry Standard. Sensors 2019, 19, 5013, doi:10.3390/s19225013.

      31. Pang, A.; Membrey, P. What Is an FPGA and What Can It Do? In Beginning FPGA: Programming Metal, Apress, B., CA, Ed. Springer: 2017; doi:10.1007/978-1-4302-6248-0_1 pp. 3-12.

      32. Venieris, S.I.; Kouris, A.; Bouganis, C.-S. Toolflows for mapping convolutional neural networks on FPGAs: A survey and future directions. arXiv preprint arXiv:1803.05900 2018, 56, 1–39, doi:10.1145/3186332.

      33. Leccese, F. Remote-Control System of High Efficiency and Intelligent Street Lighting Using a ZigBee Network of Devices and Sensors. IEEE Transactions on Power Delivery 2013, 28, 21-28, doi:10.1109/TPWRD.2012.2212215.

      34. Kuo, Y.-S.; Pannuto, P.; Schmid, T.; Dutta, P. Reconfiguring the software radio to improve power, price, and portability. In Proceedings of Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems, Canada, November 2012; pp. 267-280.

      35. Szilvási, S.; Babják, B.; Völgyesi, P.; Lédeczi, A. Marmote SDR: Experimental platform for low-power wireless protocol stack research. Journal of Sensor and Actuator Networks 2013, 2, 631-652, doi:10.3390/jsan2030631.

      36. Roisin, B.; Bodart, M.; Deneyer, A.; D’herdt, P. Lighting energy savings in offices using different control systems and their real consumption. Energy and Buildings 2008, 40, 514-523, doi:10.1016/j.enbuild.2007.04.006.

      37. Liu, J.; Zhang, W.; Chu, X.; Liu, Y. Fuzzy logic controller for energy savings in a smart LED lighting system considering lighting comfort and daylight. Energy and Buildings 2016, 127, 95-104, doi:10.1016/j.enbuild.2016.05.066.

      38. Madzalan, S.N.; Hamid, H.; Hussin, M.F.; Kadir, K.A. A new automatic lighting control system using DALI for unikl BMI library. In Proceedings of 2017 International Conference on Engineering Technology and Technopreneurship (ICE2T), Kuala Lumpur, Malaysia, December 2017; pp. 1-4.

      39. Adam, G.; Kontaxis, P.; Bouroussis, C.; Ventzas, D.; Topalis, F. Embedded computer communication and control of DALI LED drivers. In Proceedings of Balkan Light Conference, Athens, Greece, September 2015; pp. 125-130.

      40. Sambandam Raju, P.; Mahalingam, M.; Arumugam Rajendran, R. Design, Implementation and Power Analysis of Pervasive Adaptive Resourceful Smart Lighting and Alerting Devices in Developing Countries Supporting Incandescent and LED Light Bulbs. Sensors 2019, 19, 2032, doi:10.3390/s19092032.

      41. Adam, G.K. DALI LED Driver Control System for Lighting Operations Based on Raspberry Pi and Kernel Modules. Electronics 2019, 8, 1021, doi:10.3390/electronics8091021.

      42. Teich, J. Hardware/Software Codesign: The Past, the Present, and Predicting the Future. In Proceedings of the IEEE - PIEEE, Special Centennial Issue, 2012; Vol. 100, pp 1411-1430.

      43. Benini, L.; Farella, E.; Guiducci, C. Wireless sensor networks: Enabling technology for ambient intelligence. Microelectronics journal 2006, 37, 1639-1649, doi:10.1016/j.mejo.2006.04.021 44. Bhushan, B.; Sahoo, G. Routing Protocols in Wireless Sensor Networks. In Computational Intelligence in Sensor Networks, B. B. Mishra et al. (eds.) Studies in Computational Intelligence 776, Ed. Springer, Berlin, Heidelberg: 2019; doi:10.1007/978-3-662-57277-1_10 pp. 215-248.

      45. Krishnamachari, B.; Estrin, D.; Wicker, S. Modelling data-centric routing in wireless sensor networks. In Proceedings of IEEE infocom; pp. 39-44.

      46. El-Medany, W.M. FPGA-based MIMO system for Wireless Sensor Network. In System of Systems Engineering, 2009. SoSE 2009. IEEE International Conference on, Albuquerque, NM, USA, 2009; pp 1-5.

      47. Bhanumathi, V.; Kalaivanan, K. Application specific sensor-cloud: architectural model. In Computational Intelligence in Sensor Networks, B. B. Mishra et al. (eds.) Studies in Computational Intelligence 776, Ed. Springer, Berlin, Heidelberg: 2019; doi:10.1007/978-3-662-57277-1_12 pp. 277-305.

      48. Yick, J.; Mukherjee, B.; Ghosal, D. Wireless sensor network survey. Computer networks 2008, 52, 2292-2330, doi:10.1016/j.comnet.2008.04.002 49. Babber, K.; Randhawa, R. Cross-layer designs in wireless sensor networks. In Computational Intelligence in Sensor Networks, Springer-Verlag GmbH Germany, p.o.S.N., Ed. Springer-Verlag GmbH Germany: 2019; doi:0.1007/978-3-662-57277-1_7 pp. 141-166.

      50. Anastasi, G.; Conti, M.; Di Francesco, M.; Passarella, A. Energy conservation in wireless sensor networks: A survey. Ad hoc networks 2009, 7, 537-568, doi:10.1016/j.adhoc.2008.06.003 51. Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. Wireless sensor networks: a survey. Computer networks 2002, 38, 393-422, doi:10.1016/S1389-1286(01)00302-4 52. Singh, S.P.; Sharma, S. A survey on cluster based routing protocols in wireless sensor networks. Procedia computer science 2015, 45, 687-695, doi:10.1016/j.procs.2015.03.133.

      53. Rani, R. Distributed query processing optimization in wireless sensor network using artificial immune system. In Computational Intelligence in Sensor Networks, Springer-Verlag GmbH Germany, p.o.S.N., Ed. Springer: 2019; 10.1007/978-3-662-57277-1_1pp. 1-23.

      54. Raghavendra, C.S.; Sivalingam, K.M.; Znati, T. Wireless sensor networks; Springer: New York, 2006.

      55. Znati, T.; Raghavendra, C.; Sivalingam, K. Guest editorial: special issue on wireless sensor networks. Mobile Networks and Applications 2003, 8, 425-425.

      56. Wang, Q.; Balasingham, I. Wireless sensor networks-an introduction. Wireless sensor networks: application-centric design 2010, -, 1-14, doi:10.5772/658 57. Chong, C.-Y.; Kumar, S.P. Sensor networks: evolution, opportunities, and challenges. Proceedings of the IEEE 2003, 91, 1247-1256, doi:10.1109/JPROC.2003.814918 58. Kumar, S.; Shepherd, D. SensIT: Sensor information technology for the warfighter. In Proceedings of Proc. 4th Int. Conf. on Information Fusion; pp. 1-7.

      59. Pottie, G.J. Wireless Integrated Network Sensors (WINS): The Web Gets Physical. In Proceedings of Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2001 NAE Symposium on Frontiers of Engineering; pp. 78-84.

      60. Bult, K.; Burstein, A.; Chang, D.; Dong, M.; Fielding, M.; Kruglick, E.; Ho, J.; Lin, F.; Lin, T.; Kaiser, W.J. Low power systems for wireless microsensors. In Proceedings of Proceedings of 1996 International Symposium on Low Power Electronics and Design, Monterey, CA, USA, 12-14 Aug. 1996; pp. 17-21.

      61. Khan, J.; Katz, R.; Pister, K. Mobile networking for smart dust. In Proceedings of Proc. of ACK/IEEE International Conference on Mobile Computing and Networking (MobiCom).

      62. Rabaey, J.; Ammer, J.; Da Silva, J.; Patel, D. PicoRadio: Ad-hoc wireless networking of ubiquitous low-energy sensor/monitor nodes. In Proceedings of Proceedings IEEE Computer Society Workshop on VLSI 2000. System Design for a System-on-Chip Era, 27-28 April 2000; pp. 9-12.

      63. Min, R.; Bhardwaj, M.; Cho, S.-H.; Sinha, A.; Shih, E.; Wang, A.; Chandrakasan, A. An architecture for a power-aware distributed microsensor node. In Proceedings of 2000 IEEE Workshop on SiGNAL PROCESSING SYSTEMS. SiPS 2000. Design and Implementation (Cat. No. 00TH8528), Lafayette, LA, USA, 06 August 2002; pp. 581-590.

      64. Calhoun, B.H.; Daly, D.C.; Verma, N.; Finchelstein, D.F.; Wentzloff, D.D.; Wang, A.; Cho, S.-H.; Chandrakasan, A.P. Design considerations for ultra-low energy wireless microsensor nodes. IEEE Transactions on Computers 2005, 54, 727-740, doi:10.1109/TC.2005.98.

      65. Sohraby, K.; Minoli, D.; Znati, T. Wireless Sensor Networks: Technology, Protocols, and Applications; John Wiley & Sons, Inc., Publication: Wiley-Interscience, 2007; 10.1002/047011276X 66. Behera, T.; Samal, U.; Mohapatra, S. Routing protocols. In Computational Intelligence in Sensor Networks, B. B. Mishra et al. (eds.) Studies in Computational Intelligence 776, Ed. Springer, Berlin, Heidelberg.: 2019; 10.1007/978-3-662-57277-1_4pp. 79-99.

      67. Lee, J.; Kao, H.-A.; Yang, S. Service innovation and smart analytics for industry 4.0 and big data environment. Procedia cirp 2014, 16, 3-8, doi:10.1016/j.procir.2014.02.001.

      68. Ammar, R.; Samer, S. Internet of Things From Hype to Reality: The Road to Digitization, 2 ed.; Springer, Cham: Switzerland, 2019; doi:10.1007/978-3-319-99516-8 pp. 373.

      69. Rayes, A.; Salam, S. Internet of things (IoT) overview. In Internet of Things from hype to reality, 2019, S.N.S.A., Ed. Springer, Cham: Switzerland, 2019; doi:10.1007/978-3-319-99516-8_1 pp. 1-35.

      70. Jindal, V. History and architecture of wireless sensor networks for ubiquitous computing. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) 2018, 7, 214-217.

      71. IEC. Internet of things: Wireless sensor networks; International Electrotechnical Commission: Switzerland, 2014.

      72. Minoli, D. Building the internet of things with IPv6 and MIPv6: The evolving world of M2M communications; John Wiley & Sons: 2013.

      73. Nahida, S.; Yasin, S.; Kurra, R.R. Energy Efficient Routing Protocol for Wireless Sensor Networks. International Journal of Computer Science Engineering & Technology 2012, 2, 1497-1501.

      74. Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. A survey on sensor networks. IEEE Communications magazine 2002, 40, 102-114, doi:10.1109/MCOM.2002.1024422 75. Pantazis, N.A.; Nikolidakis, S.A.; Vergados, D.D. Energy-efficient routing protocols in wireless sensor networks: A survey. IEEE Communications surveys & tutorials 2013, 15, 551-591, doi:10.1109/SURV.2012.062612.00084 76. Morreale, P.; Sohraby, K.; Li, B.; Lin, Y.-B. Active, programmable, and mobile code networking. IEEE Communications Magazine: 2000; Vol. 38, pp 122-123.

      77. Ulmer, C. Wireless Sensor Networks. Background: Sensor Networks n Array of Sensor Probes (10-1000) n Collect In-Situ Data about Environment n Wireless. 2000.

      78. Mokdad, L.; Abdelli, A.; Ben-Othman, J. Detection of greedy behavior in wsn using ieee 802.15 protocol. In Proceedings of 2014 IEEE 22nd International Symposium on Modelling, Analysis & Simulation of Computer and Telecommunication Systems, Paris, France, 9-11 Sept. 2014; pp. 106-111.

      79. Zhang, H.; Arora, A.; Choi, Y.-r.; Gouda, M.G. Reliable bursty convergecast in wireless sensor networks. Computer Communications 2007, 30, 2560-2576, doi:10.1016/j.comcom.2007.05.046 80. Dargie, W.; Poellabauer, C. Fundamentals of wireless sensor networks: theory and practice; John Wiley & Sons, Ltd. Publication: 2010; doi:10.1002/9780470666388 81. Pister, K.; Doherty, L. TSMP: Time synchronized mesh protocol. IASTED International Symposium, Distributed Sensor Networks (DNS 2008) 2008, 391, 61.

      82. Swati, A.J.; Priyanka, R. Wireless sensor network (WSN): Architectural design issues and challenges. Int. J. Comput. Sci. Eng 2010, 2, 3089-3094.

      83. Nayak, A.; Stojmenovic, I. Wireless sensor and actuator networks: algorithms and protocols for scalable coordination and data communication; John Wiley & Sons: Hoboken, NJ, USA, 2010.

      84. Dargie, W. Dynamic power management in wireless sensor networks: State-of-the-art. IEEE Sensors Journal 2012, 12, 1518-1528, doi:10.1109/JSEN.2011.2174149 85. Kumar, M. AOR-ID-KAP: An Authenticated One-Round Identity-Based Key Agreement Protocol for Wireless Sensor Network. In Computational Intelligence in Sensor Networks, B. B. Mishra et al. (eds.) Studies in Computational Intelligence 776, Ed. Springer, Berlin, Heidelberg: 2019; 10.1007/978-3-662-57277-1_18pp. 427-454.

      86. Pasolini, G.; Toppan, P.; Zabini, F.; De Castro, C.; Andrisano, O. Design, deployment and evolution of heterogeneous smart public lighting systems. Applied Sciences 2019, 9, 3281, doi:10.3390/app9163281.

      87. Caicedo, D.; Pandharipande, A. Distributed illumination control with local sensing and actuation in networked lighting systems. IEEE Sensors Journal 2012, 13, 1092-1104, doi:10.1109/JSEN.2012.2228850.

      88. Valentová, M.; Quicheron, M.; Bertoldi, P. LED projects and economic test cases in Europe. International Journal of Green Energy 2015, 12, 843-851, doi:10.1080/15435075.2014.887568.

      89. Mahoor, M.; Najafaabadi, T.A.; Salmasi, F.R. A smart street lighting control system for optimization of energy consumption and lamp life. In Proceedings of 2014 22nd Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, May 2014; pp. 1290-1294.

      90. Mohamaddoust, R.; Haghighat, A.T.; Motahari Sharif, M.J.; Capanni, N. A novel design of an automatic lighting control system for a wireless sensor network with increased sensor lifetime and reduced sensor numbers. Sensors 2011, 11, 8933-8952, doi:10.3390/s110908933 91. Liu, D.; Qi, S.; Liu, T.; Yu, S.-z.; Sun, F. The design and realization of communication technology for street lamps control system. In Proceedings of 2009 4th International Conference on Computer Science & Education, Nanning, China, 25-28 July 2009; pp. 259-262.

      92. Lin, J.; Jin, X.; Mao, Q. Wireless monitoring system of street lamps based on ZigBee. In Proceedings of 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing, Beijing, China, 24-26 Sept. 2009; pp. 1-3.

      93. Viani, F.; Polo, A.; Robol, F.; Giarola, E.; Ferro, A. Experimental validation of a wireless distributed system for smart public lighting management. In Proceedings of 2016 IEEE International Smart Cities Conference (ISC2), Trento, Italy; pp. 1-6.

      94. Cimdins, M.; Arlt, W.; Hellbrueck, H. IoTiSS: Internet of Things in Smart Streetlighting. In Proceedings of Mobile Communication-Technologies and Applications; 24. ITG-Symposium, Osnabrueck, Germany, 06 June 2019; pp. 1-6.

      95. Chang, Y.S.; Chen, Y.H.; Zhou, S.K. A smart lighting system for greenhouses based on Narrowband-IoT communication. In Proceedings of 2018 13th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, Taiwan, 28 January 2019; pp. 275-278.

      96. Sikder, A.K.; Acar, A.; Aksu, H.; Uluagac, A.S.; Akkaya, K.; Conti, M. IoT-enabled smart lighting systems for smart cities. In Proceedings of 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA; pp. 639-645.

      97. Galkin, I.; Tetervenoks, O. The study of microcontroller based embedded system for smart lighting applications. In Proceedings of 2014 6th European Embedded Design in Education and Research Conference (EDERC), Milan, Italy; pp. 105-108.

      98. Kumar, A.; Shareef, A.; Harn, K.T.; Kar, P.; Panda, S.K. A Complete Hardware Setup for Smart Lighting System. In Proceedings of 2019 IEEE International Conference on Sustainable Energy Technologies and Systems (ICSETS), Bhubaneswar, India; pp. 297-301.

      99. Lee, C.K.; Liu, H.; Fuhs, D.; Kores, A.; Waffenschmidt, E. Smart lighting systems as a demand response solution for future smart grids. IEEE Journal of Emerging and Selected Topics in Power Electronics 2019, 8, 2362-2370, doi:10.1109/JESTPE.2018.2890385 100. Tripathy, A.K.; Mishra, A.K.; Das, T.K. Smart lighting: Intelligent and weather adaptive lighting in street lights using IoT. In Proceedings of 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), Kerala, India; pp. 1236-1239.

      101. Halefoglu, L.; Jiang, X.; Kendrick, A.J.; Saunders, G.D.; Sciarrino, M.; Vizner, G.; Bailey, R. Smart lighting: Developing a smarter control mechanism for park trail lighting. In Proceedings of 2016 IEEE Systems and Information Engineering Design Symposium (SIEDS), Charlottesville, VA, USA; pp. 277-282.

      102. Jin, D.; Hannon, C.; Li, Z.; Cortes, P.; Ramaraju, S.; Burgess, P.; Buch, N.; Shahidehpour, M. Smart street lighting system: A platform for innovative smart city applications and a new frontier for cyber-security. The Electricity Journal 2016, 29, 28-35, doi:10.1016/j.tej.2016.11.011 103. Smith, J.R. Chapter 20 - X-10 Home Automation. In Programming the PIC Microcontroller with MBASIC, Smith, J.R., Ed. Newnes: Burlington, 2005; doi:10.1016/B978-075067946-6/50022-5 pp. 453-486.

      104. Burroughs, J. X-10® home automation using the PIC16F877A. Lamp Microchip Technology Inc. 2010, 10.

      105. Cho, S.; Dhingra, V. Street lighting control based on LonWorks power line communication. In Proceedings of 2008 IEEE International Symposium on Power Line Communications and Its Applications, Jeju, Korea (South); pp. 396-398.

      106. Muresan, N.; Orza, B.; Vlaicu, A. Communication Between Intelligent Devices in LONWorks Control Networks. Acta Technica Napocensis - Electronics and Telecommunications 2010, 51, 57-63.

      107. Chinchero, H.F.; Alonso, J.M.; Ortiz, H. LED lighting systems for smart buildings: a review. IET Smart Cities 2020, 2, 126-134, doi:10.1049/iet-smc.2020.0061 108. Ching, T.W. Transition-mode dimmable LED driver for illumination applications. In Proceedings of The 2010 International Power Electronics Conference-ECCE ASIA-, Sapporo, Japan; pp. 398-402.

      109. Ching, T.W. Modular dimmable light-emitting-diode driver for general illumination applications. In Proceedings of CCECE 2010, Calgary, AB, Canada, 16 September 2010; pp. 1-4.

      110. Jiang, W.; Jiang, Y.; Ren, H. Analysis and prospect of control system for stage lighting. In Proceedings of 2010 3rd International Congress on Image and Signal Processing, Yantai, China, 29 November 2010; pp. 3923-3929.

      111. Kudryashov, A.V.; Galishheva, E.S.; Kalinina, A.S. Lighting Control Using DALI Interface. In Proceedings of 2018 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Moscow, Russia, Russia, June 2019; pp. 1-5.

      112. Rasal, S.P. Energy Efficient Building Automation Systems Using Protocols and Control Methods. Development (IJECIERD) 2013, 3(4), 65-72.

      113. International Electrotechnical Commission. IEC 62386-201:2015. Digital Addressable Lighting Interface – Part 201: Particular requirements for control gear – Fluorescent lamps., Disponible en línea: https://webstore.iec.ch/publication/22534 (consultado el 14 de Julio de 2021).

      114. ZVEI-Division-Luminaires. Manual DALI AG (Digital Addressable Lighting Interface Activity Group) 2001, Frankfurt, Germany, Disponible en línea: http://www.susaeta.net/attachments/article/42/manual%20dali.pdf (consultado el 14 de Julio de 2021).

      115. Barkalov, A.; Titarenko, L.; Kolopienczyk, M.; Mielcarek, K.; Bazydlo, G. Field Programmable Gate Arrays in FSM Design. In Logic Synthesis for FPGA-Based Finite State Machines, doi:10.1007/978-3-319-24202-6_2 ed.; Springer, Cham: 2016; Vol. 38, pp. 33-64.

      116. Carter, W.; Duong, K.; Freeman, R.H.; Hsieh, H.C.; Ja, J.Y.; Mahoney, J.E.; Ngo, L.T.; Sze, S.L. A User Programmable Reconfigurable Gate Array. In Proceedings of IEEE Custom Integrated Circuits Conference; pp. 233-235.

      117. Trimberger, S.M.S. Three Ages of FPGAs: A Retrospective on the First Thirty Years of FPGA Technology: This Paper Reflects on How Moore's Law Has Driven the Design of FPGAs Through Three Epochs: the Age of Invention, the Age of Expansion, and the Age of Accumulation. IEEE Solid-State Circuits Magazine 2018, 10, 16-29, doi:10.1109/MSSC.2018.2822862.

      118. Pang, A.; Membrey, P. FPGA Development Timeline. In Beginning FPGA: Programming Metal, Apress, B., CA, Ed. Springer: 2017; doi:10.1007/978-1-4302-6248-0_5 pp. 107-115.

      119. Brown, S.; Rose, J. FPGA and CPLD architectures: A tutorial. IEEE design & test of computers 1996, 13, 42-57, doi:10.1109/54.500200.

      120. Trimberger, S.M. Field-Programmable Gate Array Technology; Boston, MA, USA.: 1994.

      121. Kean, T.A. Configurable logic: a dynamically programmable cellular architecture and its VLSI implementation. Ph.D. dissertation CST62-89 1991, Dept. Comput. Sci., Univ. Edinburgh, United Kingdom.

      122. Cong, J.; Ding, Y. FlowMap: An optimal technology mapping algorithm for delay optimization in lookup-table based FPGA designs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 1994, 13, 1-12, doi:10.1109/43.273754 123. Betz, V.; Rose, J.; Marquardt, A. Architecture and CAD for Deep-Submicron FPGAs. The Kluwer International Series in Engineering and Computer Science. Academic.: 1999; Boston, MA, USA.

      124. Betz, V.; Rose, J. VPR: A new packing, placement and routing tool for FPGA research. In Proceedings of International Workshop on Field Programmable Logic and Applications; pp. 213-222.

      125. Frankle, J. Iterative and adaptive slack allocation for performance-driven layout and FPGA routing. In Proceedings of IEEE Design Autom. Conf, DAC; pp. 536-542.

      126. McMurchie, L.; Ebeling, C. PathFinder: a negotiation-based performance-driven router for FPGAs. In Proceedings of Proceedings of the 1995 ACM third international symposium on Field-programmable gate arrays, Monterey, California, USA; pp. 111–117.

      127. Roychowdhury, V.P.; Greene, J.W.; El Gamal, A. Segmented channel routing. IEEE transactions on computer-aided design of integrated circuits and systems 1993, 12, 79-95, doi:10.1109/43.184845.

      128. DeHon, A. Balancing Interconnect and Computation in a Reconfigurable Computing Array (or, why you don't really want 100% LUT utilization). In Proceedings of Proceedings of the 1999 ACM/SIGDA seventh international symposium on Field programmable gate arrays, Feb. 1999; pp. 69-78.

      129. Halfhill, T. MicroBlaze v7 Gets an MMU. Microprocessor Rep. 2007.

      130. Kuon, I.; Rose, J. Measuring the gap between FPGAs and ASICs. IEEE Transactions on computer-aided design of integrated circuits and systems 2007, 26, 203-215.

      131. Lewis, D.; Ahmed, E.; Cashman, D.; Vanderhoek, T.; Lane, C.; Lee, A.; Pan, P. Architectural enhancements in Stratix-III™ and Stratix-IV™. In Proceedings of Proceedings of the ACM/SIGDA international symposium on Field programmable gate arrays, February 2009; pp. 33-42.

      132. Tuan, T.; Kao, S.; Rahman, A.; Das, S.; Trimberger, S. A 90nm low-power FPGA for battery-powered applications. In Proceedings of Proceedings of the 2006 ACM/SIGDA 14th international symposium on Field programmable gate arrays, February 2006; pp. 3-11.

      133. Pang, A.; Membrey, P. Our Weapon of Choice. In Beginning FPGA: Programming Metal, Apress, B., CA, Ed. Springer: 2017; doi:10.1007/978-1-4302-6248-0_2 pp. 13-21.

      134. Oliveira, D.; Costa, M.; Pinto, S.; Gomes, T. The future of low-end motes in the Internet of Things: A prospective paper. Electronics 2020, 9, 111, doi:10.3390/electronics9010111.

      135. Lattice-Semiconductor. Accelerating Implementation of Low Power Artificial Intelligence at the Edge. Disponible en línea: https://www.latticesemi.com/Search.aspx?&lcid=9&q=&t=-420&qdoctypes=d0698b4192224dfda5a6f5add96ae1bd (consultado el 25 de enero de 2022) 2018, Technical Report.

      136. Mo, J.P.T.; Nemes, L. Global Engineering, Manufacturing and Enterprise Networks: IFIP TC5 WG5. 3/5.7/5.12 Fourth International Working Conference on the Design of Information Infrastructure Systems for Manufacturing (DIISM 2000). November 15–17, 2000, Melbourne, Victoria, Australia, 1 ed.; Springer Science & Business Media: Springer, Boston, MA, 2001; Vol. 63.

      137. Woods, R.; McAllister, J.; Lightbody, G.; Yi, Y. FPGA-based implementation of signal processing systems; Wiley Online Library: 2017; doi:10.1002/9781119079231.

      138. Dimond, R.; Racaniere, S.; Pell, O. Accelerating large-scale HPC Applications using FPGAs. In Proceedings of 2011 IEEE 20th Symposium on Computer Arithmetic, Tuebingen, Germany, 25-27 July 2011 pp. 191-192.

      139. Rodriguez Andina, J.J.; De la Torre Arnanz, E.; Valdes Peña, M.D. FPGAs: fundamentals, advanced features, and applications in industrial electronics; CRC Press: 2017; doi:10.1201/9781315162133 pp. 265.

      140. LaMeres, B.J. Modeling Finite State Machines. In Quick Start Guide to VHDL, Springer, Cham: 2019; doi:10.1007/978-3-030-04516-6_9 pp. 127-141.

      141. LaMeres, B.J. Behavioral Modeling of Sequential Logic. In Introduction to Logic Circuits & Logic Design with VHDL, Springer, Cham: 2019; 10.1007/978-3-030-12489-2_9 pp. 329-360.

      142. Pang, A.; Membrey, P. Combinatorial Logic: Putting It All Together on the FPGA. In Beginning FPGA: Programming Metal, Apress, B., CA, Ed. Springer: 2017; doi:10.1007/978-1-4302-6248-0_11 pp. 191-217.

      143. LaMeres, B.J. Sequential Logic Design. In Introduction to Logic Circuits & Logic Design with VHDL, Springer, Cham: 2019; 10.1007/978-3-030-12489-2_7 pp. 211-284.

      144. Barkalov, A.; Titarenko, L.; Kolopienczyk, M.; Mielcarek, K.; Bazydlo, G. Background of Finite State Machines and Programmable Logic. In Logic Synthesis for FPGA-Based Finite State Machines, doi:10.1007/978-3-319-24202-6_1 ed.; Springer, Cham: 2016; Vol. 38, pp. 1-31.

      145. Maxinez, D.G.; Alcalá Jara, J. VHDL: El arte de programar sistemas digitales, 7ma ed.; Grupo Editorial Patria: México, 2010.

      146. Chu, P.P. FPGA prototyping by VHDL examples: Xilinx Spartan-3 version; John Wiley & Sons: Cleveland State University, 2011.

      147. Gupta, A. UART Communication. In The IoT Hacker's Handbook: A Practical Guide to Hacking the Internet of Things, Springer Science+Business - Apress Media: Walnut, CA, USA, 2019; doi:10.1007/978-1-4842-4300-8_4 pp. 59-80.

      148. Subero, A. USART, SPI, and I2C: Serial Communication Protocols. In Programming PIC Microcontrollers with XC8, Springer Science+Business - Apress Media: 2018; doi:978-1-4842-3273-6_9 pp. 209-276.

      149. Jing, C.; Shu, D.; Gu, D. Design of streetlight monitoring and control system based on wireless sensor networks. In Proceedings of 2007 2nd IEEE Conference on Industrial Electronics and Applications, Harbin, China, 24 September 2007; pp. 57-62.

      150. Müllner, R.; Riener, A. An energy efficient pedestrian aware Smart Street Lighting system. International Journal of Pervasive Computing and Communications 2011, 7, 147–161, doi:10.1108/17427371111146437 151. Pantoni, R.; Brandão, D. A confirmation-based geocast routing algorithm for street lighting systems. Computers & Electrical Engineering 2011, 37, 1147-1159, doi:10.1016/j.compeleceng.2011.06.004.

      152. Leccese, F.; Leonowicz, Z. Intelligent wireless street lighting system. In Proceedings of 2012 11th International Conference on Environment and Electrical Engineering, Venice, Italy, June 2012; pp. 958-961.

      153. Yusoff, Y.M.; Rosli, R.; Karnaluddin, M.U.; Samad, M. Towards smart street lighting system in Malaysia. In Proceedings of 2013 IEEE Symposium on Wireless Technology & Applications (ISWTA), Kuching, Malaysia, 19 December 2013; pp. 301-305.

      154. Zhang, J.; Qiao, G.; Song, G.; Sun, H.; Ge, J. Group decision making based autonomous control system for street lighting. Measurement 2013, 46, 108-116, doi:10.1016/j.measurement.2012.05.025 155. Kovács, A.; Bátai, R.; Csáji, B.C.; Dudás, P.; Háy, B.; Pedone, G.; Révész, T.; Váncza, J. Intelligent control for energy-positive street lighting. Energy 2016, 114, 40-51, doi:10.1016/j.energy.2016.07.156 156. Todorović, B.M.; Samardžija, D. Road lighting energy-saving system based on wireless sensor network. Energy Efficiency 2017, 10, 239-247, doi:10.1007/s12053-016-9447-6 157. Kaleem, Z.; Ahmad, I.; Lee, C. Smart and energy efficient led street light control system using ZigBee network. In Proceedings of 2014 12th International Conference on Frontiers of Information Technology, Islamabad, Pakistan, June 2015; pp. 361-365.

      158. Elejoste, P.; Angulo, I.; Perallos, A.; Chertudi, A.; Zuazola, I.J.G.; Moreno, A.; Azpilicueta, L.; Astrain, J.J.; Falcone, F.; Villadangos, J. An easy to deploy street light control system based on wireless communication and LED technology. Sensors (Basel, Switzerland) 2013, 13, 6492-6523, doi:10.3390/s130506492.

      159. Leccese, F.; Cagnetti, M.; Trinca, D. A smart city application: A fully controlled street lighting isle based on Raspberry-Pi card, a ZigBee sensor network and WiMAX. Sensors 2014, 14, 24408-24424, doi:10.3390/s141224408.

      160. García-Castellano, M.; González-Romo, J.M.; Gómez-Galán, J.A.; García-Martín, J.P.; Torralba, A.; Pérez-Mira, V. ITERL: a wireless adaptive system for efficient road lighting. Sensors 2019, 19, 5101, doi:10.3390/s19235101.

      161. Domingo-Perez, F.; Gil-de-Castro, A.; Flores-Arias, J.; Bellido-Outeirino, F.; Moreno-Munoz, A. Lighting control system based on DALI and wireless sensor networks. In Proceedings of 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, April 2012; pp. 1-6.

      162. Pinto, M.F.; Soares, G.M.; Mendonça, T.R.; Almeida, P.S.; Braga, H.A. Smart modules for lighting system applications and power quality measurements. In Proceedings of 2014 11th IEEE/IAS International Conference on Industry Applications, Juiz de Fora, Brazil, March 2015; pp. 1-8.

      163. Wang, S.-C.; Liu, Y.-H.; Chen, Y.-L.; Chen, J.-Y. Development of DALI-based electronic ballast with energy saving control for ultraviolet lamps. In Proceedings of 2010 8th IEEE International Conference on Industrial Informatics, Osaka, Japan, August 2010; pp. 214-219.

      164. Adam, G.K.; Kontaxis, P.A.; Doulos, L.T.; Madias, E.-N.D.; Bouroussis, C.A.; Topalis, F.V. Embedded microcontroller with a CCD camera as a digital lighting control system. Electronics 2019, 8, 33, doi:10.3390/electronics8010033.

      165. Texas-Instruments. Application Report: Digital Addressable Lighting Interface (DALI) Implementation Using MSP430 Value Line Microcontrollers, SLAA422A. Texas-Instruments 2012, SLAA422A, Disponible en línea: http://www.ti.com/lit/an/slaa422a/slaa422a.pdf (consultado el 14 de Julio de 2021).

      166. tridonic. DALI Interface RS232 PS/S PC interface module for DALI systems. Lighting Controls and Connectivity. Disponible en línea: https://www.tridonic.com/com/en/download/data_sheets/DALI_RS232_Interface_en.pdf (consultado el 5 mayo 2022).

      167. de la Piedra, A.; Braeken, A.; Touhafi, A. Sensor systems based on FPGAs and their applications: A survey. Sensors 2012, 12, 12235-12264, doi:10.3390/s120912235.

      168. Pena, M.D.V.; Rodriguez-Andina, J.J.; Manic, M. The internet of things: The role of reconfigurable platforms. IEEE Industrial Electronics Magazine 2017, 11, 6-19, doi:10.1109/MIE.2017.2724579.

      169. Gomes, T.; Salgado, F.; Tavares, A.; Cabral, J. CUTE mote, a customizable and trustable end-device for the internet of things. IEEE Sensors Journal 2017, 17, 6816-6824, doi:10.1109/JSEN.2017.2743460.

      170. Engel, A.; Koch, A. Heterogeneous wireless sensor nodes that target the Internet of Things. IEEE Micro 2016, 36, 8-15, doi:10.1109/MM.2016.100.

      171. Silva, M.; Tavares, A.; Gomes, T.; Pinto, S. ChamelIoT: An agnostic operating system framework for reconfigurable IoT devices. IEEE Internet of Things Journal 2018, 6, 1291-1292, doi:10.1109/JIOT.2018.2863545.

      172. El Kateeb, A. Mote design supported with remote hardware modifications capability for wireless sensor network applications. International Journal of Advanced Smart Sensor Network Systems (IJASSN) 2013, 3, 13-21, doi:10.5121/ijassn.2013.3301.

      173. Gomes, T.; Pinto, S.; Salgado, F.; Tavares, A.; Cabral, J. Building IEEE 802.15. 4 accelerators for heterogeneous wireless sensor nodes. IEEE Sensors Letters 2017, 1, 1-4, doi:10.1109/LSENS.2017.2681625.

      174. Patil, V.; Deshpande, S. Design of FPGA Soft Core Based WSN Node Using Customization Paradigm. Wireless Personal Communications 2022, 122, 783-805, doi:10.1007/s11277-021-08925-y.

      175. Patil, V.S.; Mane, Y.B.; Deshpande, S. FPGA based power saving technique for sensor node in wireless sensor network (WSN). In Computational Intelligence in Sensor Networks, B. B. Mishra et al. (eds.) Studies in Computational Intelligence 776, Ed. Springer, Berlin, Heidelberg: 2019; doi:10.1007/978-3-662-57277-1_16 pp. 385-404.

      176. Toubal, A.; Bengherbia, B.; Zmirli, M.O.; Guessoum, A. FPGA implementation of a wireless sensor node with built-in security coprocessors for secured key exchange and data transfer. Measurement 2020, 153, 107429, doi:10.1016/j.measurement.2019.107429.

      177. Mahdi, S.Q.; Gharghan, S.K.; Hasan, M.A. FPGA-Based neural network for accurate distance estimation of elderly falls using WSN in an indoor environment. Measurement 2021, 167, 108276, doi:10.1016/j.measurement.2020.108276.

      178. Sun, Y.; Li, L.; Luo, H. Design of FPGA-based multimedia node for WSN. In Proceedings of 2011 7th International Conference on Wireless Communications, Networking and Mobile Computing, Wuhan, China 10 October 2011; pp. 1-5.

      179. Bengherbia, B.; Ould Zmirli, M.; Toubal, A.; Guessoum, A. FPGA-based wireless sensor nodes for vibration monitoring system and fault diagnosis. Measurement: Journal of the International Measurement Confederation 2017, 101, 81-92, doi:10.1016/j.measurement.2017.01.022.

      180. Wei, J.; Wang, L.; Wu, F.; Chen, Y.; Ju, L. Design and implementation of wireless sensor node based on open core. In Proceedings of 2009 IEEE Youth Conference on Information, Computing and Telecommunication, Beijing, 15 January 2010; pp. 102-105.

      181. Zhiyong, C.H.; Pan, L.Y.; Zeng, Z.; Meng, M.Q.-H. A novel FPGA-based wireless vision sensor node. In Proceedings of 2009 IEEE International Conference on Automation and Logistics, Shenyang, China, 5-7 Aug. 2009; pp. 841-846.

      182. Quiles, F.J.; Ortiz, M.; Gersnoviez, A.; Brox, M.; Olivares, A.; Glosekotter, P. Development of a wireless low power datalogger with high performance converter. Elektronika ir Elektrotechnika 2015, 21, 21-27, doi:10.5755/j01.eee.21.3.10044.

      183. Lattice-Semiconductor. iCE40 LP/HX Family Data Sheet. Disponible en línea: http://www.latticesemi.com/en/Products/FPGAandCPLD/iCE40 (consultado el 20 de agosto de 2021) 2018, FPGA-DS-02029-3.5.

      184. iCEcube2. Design Software (Lattice Semiconductor). Ultra-productive design tools for ultra-low density devices. 2020, Disponible en línea: http://www.latticesemi.com/iCEcube2 (consultado el 21 de septiembre de 2021).

      185. Micron-Technology-Inc. M25P40 3V 4Mb Serial Flash Embedded Memory. Disponible en línea: www.micron.com/-/media/client/global/documents/products/data-sheet/nor-flash/serial-nor/m25p/m25p40.pdf?rev=9762aaf3985f4b978574ebe826f994fe (consultado el 20 de agosto de 2021) 2011, CCMTD-1725822587-8430, Rev. H 05/18.

      186. Linear-Technology/Analog-Devices. IC Precision Oscillator Silicon - LTC1799CS. Disponible en línea: https://www.analog.com/media/en/technical-documentation/data-sheets/LTC1799.pdf (consultado el 20 de agosto de 2021) 2020, Rev. E.

      187. Texas-Instruments. CC2530 Second Generation - A True System-on-Chip Solution for 2.4 GHz IEEE 802.15. 4/RF4CE/ZigBee Applications. CC2530F32, CC2530F64, CC2530F128, CC2530F256 2011, SWRS081B, Disponible en línea: http://www.ti.com/lit/ds/symlink/cc2530.pdf (consultado el 20 de agosto de 2021).

      188. Texas-Instruments. CC2530 Development Kit User's Guide. Texas-Instruments 2010, SWRU208B, Disponible en línea: http://www.ti.com/lit/ug/swru208b/swru208b.pdf (consultado el 27 de abril de 2022).

      189. Myrra-Electronic. Transformers Datasheet—2.5 W and 5 W. 2015, Disponible en línea: http://www.acalbfi.com/be/Power-supplies/AC-DC/Electronic-transformers/p/Electronic-transformer--Switching-power-supply--3-3V--2-5W--regulated/0000003LZW (consultado el 20 de agosto de 2021).

      190. Murata-Manufacturing-Company-Ltd. Converters MEU1S0315ZC. Disponible en línea: https://www.murata.com/products/productdetail?partno=MEU1S0315ZC (consultado el 20 de agosto de 2021). 2013.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno