Ayuda
Ir al contenido

Dialnet


New insights into pea compound inflorescence development: role of ftc and vegetative1 as regulatory factors

  • Autores: Marcos Pascual Serra Picó
  • Directores de la Tesis: María de los Reyes Benlloch Ortiz (dir. tes.), Francisco Madueño Albi (dir. tes.), María Purificación Lisón Párraga (tut. tes.)
  • Lectura: En la Universitat Politècnica de València ( España ) en 2022
  • Idioma: español
  • Tribunal Calificador de la Tesis: Thomas Henry Noel Ellis (presid.), Manuel Piñeiro Galvin (secret.), Marta Santalla (voc.)
  • Programa de doctorado: Programa de Doctorado en Biotecnología por la Universitat Politècnica de València
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: RiuNet
  • Resumen
    • Inflorescence architecture determines position and number of flowers (and fruits) in the plant. This affects plant shape, contributing to morphological diversity, and also influences seed yield. Therefore, understanding the genetics behind inflorescence development is relevant not only to plant developmental biology but also to agriculture, to design new breeding strategies.

      Most legumes have compound inflorescences, in which the flowers do not form on the main stem but from secondary inflorescences (I2) at the flanks of the main primary inflorescence (I1). This is in contrast to plants with simple inflorescences, such as Arabidopsis, where the flowers directly form at the I1. Pea (Pisum sativum) belongs to the Fabaceae family and the galegoid clade of legumes and has a compound inflorescence.

      It is well known that VEGETATIVE1/ FULc (VEG1) encodes a transcription factor that specifies the identity of the I2 meristem in legumes, but it is still unknown how and through which genes VEG1 controls I2 development and the genetic pathways in which it is involved. In this work, we aimed to identify regulatory targets of VEG1. For that, we compared the transcriptomes of inflorescence apices from wild type and pea mutants with defects in inflorescence development: proliferating inflorescence meristems (pim - with multiple I2 meristems), veg1 and vegetative2 (veg2), none of which produce neither I2 meristems nor flowers). Using this approach, we have isolated I2-expressed meristem genes and identified some possible targets of VEG1, among them some genes that seem promising tools to improve yield in legumes.

      FLOWERING LOCUS T (FT) is a key regulator of the photoperiod inductive pathway that controls flowering time in Arabidopsis. In legumes, the FT clade has diversified into three subclades: FTa, FTb and FTc. Pea FTc is distant phylogenetically from the other FTs and has an unusual expression pattern, being expressed only at the inflorescence apex. In this work we have characterized pea ftc mutants and used them to analyze the genetic interactions of FTc with DETERMINATE and LATE FLOWERING, pea homologues of TERMINAL FLOWER 1 of Arabidopsis. This analysis has revealed a function of FTc in the control of flowering and, interestingly, of I2 meristem development, this second function being possibly mediated through FTc regulation of VEG1 expression.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno