All solid-state Li-ion batteries present key technological advantages that position them as a promising alternative to State-of-the-Art liquid electrolyte-based batteries, namely a wider electrochemical stability window, low toxicity, and hindered Li dentrite formation. These directly impact on the energy density, environmentally friendliness and safety, respectively. Importantly, all solid-state configurations also allow downscaling the whole battery to micrometric thin film components, paving the way towards the fabrication of compact microbatteries for low power energy supply. In this thesis, an all solid-state high voltage Li-ion thin film battery comprised of LiNi0.5Mn1.5O4 cathode, a LiPON solid electrolyte, and a metallic lithium anode has been developed, supported on high-value stainless steel current collector substrates. Growing parameters, individual film properties and issues related to the internal solid-solid interfaces are deeply analyzed.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados