El tiempo es una de las dimensiones fundamentales de la realidad. Paradójicamente, los fenómenos temporales del mundo natural contienen ingentes cantidades de información redundante, y a pesar de ello, codificar internamente el tiempo en el cerebro es imprescindible para anticiparse a peligros en ambientes dinámicos. Como respuesta al balance entre complejidad y velocidad, la hipótesis de la compactación del tiempo propone que el cerebro no codifica el tiempo explícitamente, sino que lo integra en el espacio. La compactación del tiempo proporciona un marco operativo que pretende explicar cómo las situaciones dinámicas, percibidas o producidas, se representan cognitivamente en forma de predicciones espaciales o representaciones internas compactas (CIR), que pueden almacenarse en la memoria y recuperarse más adelante para tomar decisiones. El primer objetivo de este estudio fue demostrar experimentalmente que la compactación del tiempo es una estrategia cognitiva presente en el cerebro humano. Para ello se recogió una muestra de 410 participantes que realizaron una tarea de clasificación por ensayo y error, diseñada para modular el ritmo de aprendizaje bajo las asunciones de la compactación del tiempo. Los resultados revelaron que la compactación del tiempo es una estrategia cognitiva en los hombres, cuyo aprendizaje se moduló según lo previsto. Sin embargo, las mujeres no mostraron dicha modulación, a pesar de que su rendimiento fue comparable al de los hombres del grupo control. Esto implica que la compactación del tiempo es un mecanismo cognitivo predominante en hombres, y que las mujeres recurren a ella a la vez que a otras estrategias dentro de un repertorio más amplio. El segundo objetivo de este estudio fue describir matemáticamente el comportamiento de los participantes reales durante la resolución de la tarea. Para ello, se desarrolló un marco probabilístico basado en leyes esenciales del funcionamiento memorístico. Los resultados replicaron con éxito el proceso de aprendizaje poblacional de los datos reales, además del rendimiento individual de los grupos favorecidos y controles. El tercer objetivo fue desarrollar una red neural biológica, inspirada en fenómenos cerebrales relevantes para la compactación del tiempo como la anticipación visual, la precesión de fase theta y la plasticidad sináptica. Los resultados revelaron que las interacciones son fronteras naturales de predicción, en forma de incrementos en los niveles de activación y de respuesta neuronales para ventanas de predicción próximas a las colisiones. Además, las interacciones son eventos que concentran la información del entorno y focalizan la atención, por lo que son codificadas preferentemente en situaciones de distracción y su aprendizaje es más rápido en escenarios de competición. En conclusión, este trabajo proporciona evidencias a favor de la representación interna de situaciones dinámicas como abstracciones estáticas o CIRes, organizadas como mapas especiales sin dimensión temporal. La compactación del tiempo es un mecanismo cognitivo preferente en hombres, en contraste con las mujeres, que la utilizan dentro de un abanico más amplio de estrategias. Además, es dependiente del estadio de maduración, actuando como un mecanismo basal pero aún no saliente a partir de los 9 años de edad. La modelización matemática ha demostrado que fenómenos como la consolidación de memoria y el olvido forman parte de su maquinaria cognitiva. Por último, los principios de la compactación del tiempo pueden surgir de forma natural en redes neurales biológicas simples y sin topografía, a partir de mecanismos funcionales preexistentes. La predicción de interacciones se plantea, así, como un elemento mental que estructura procedimientos biológicos básicos de procesamiento de información, como la atención y la memoria.
Time is one of the most prominent dimensions that organize reality. Paradoxically, there are loads of redundant information contained within the temporal features of the natural world, and yet internal coding of time in the brain seems to be crucial for anticipating time-changing, dynamic hazards. Allocating such significant brain resources to process spatiotemporal aspects of complex environments should apparently be incompatible with survival, which requires fast and accurate responses. Nonetheless, animals make decisions under pressure and in narrow time windows. How does the brain achieve this? An effort to resolve the complexity-velocity trade-off led to a hypothesis called time compaction, which states the brain does not encode time explicitly but embeds it into space. Theoretically, time compaction can significantly simplify internal representations of the environment and hence ease the brain workload devoted to planning and decision-making. Time compaction also provides an operational framework that aims to explain how perceived and produced dynamic situations are cognitively represented, in the form of spatial predictions or compact internal representations (CIRs) that can be stored in memory and be used later on to guide behaviour and generate action. Although successfully implemented in robots, time compaction still lacked assessment of its biological soundness as an actual cognitive mechanism in the brain...
© 2001-2024 Fundación Dialnet · Todos los derechos reservados