Ayuda
Ir al contenido

Dialnet


Study of the host genetic control over the ruminal microbiota and their relationships with methane emissions in dairy cattle

  • Autores: Alejandro Saborío Montero
  • Directores de la Tesis: Óscar González Recio (dir. tes.), Agustín Blasco Mateu (tut. tes.)
  • Lectura: En la Universitat Politècnica de València ( España ) en 2021
  • Idioma: español
  • Tribunal Calificador de la Tesis: Noelia Ibáñez Escriche (presid.), Yuliaxis Ramayo Caldas (secret.), Antonio Reverter Guimeso (voc.)
  • Programa de doctorado: Programa de Doctorado en Ciencia y Tecnología de la Producción Animal por la Universitat Politècnica de València
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: RiuNet
  • Resumen
    • The analysis of the host genetic control over its microbiota has recently been pointed out as a promising theme in different fields of study. The relationship between the host-microbiome holobiont and phenotypes in dairy cattle could lead to new insights in breeding programs. Within this Ph.D. thesis, estimation and analysis through different statistical approaches were performed aiming to unravel the host genetic control over the microbiota in dairy cattle. Besides, methane concentration trait was analyzed as a potential phenotype to be included in the Spanish dairy cattle breeding program. Higher relative abundance of most eukaryotes (mainly ciliate protozoa and fungi) and some archaea (Methanobrevibacter spp. Methanothermus spp and Methanosphera spp.) were risk factors for being classified in the high categories. a set of structural equation models (SEMs) of a recursive type within a Markov chain Monte Carlo (MCMC) framework was proposed to jointly analyze the host-metagenome-phenotype relationship. Non-recursive models were set as benchmark. Heritability of CH4 was estimated at 0.12 ± 0.01 in both, the recursive and non-recursive, models. Likewise, heritability estimates for the relative abundance of the taxa overlapped between models and ranged between 0.08 and 0.48. Genetic correlations between the microbial composition and CH4 ranged from -0.76 to 0.65 in the non-recursive bivariate models and from -0.68 to 0.69 in the recursive models. Regardless of the statistical model used, positive genetic correlations with methane were estimated consistently for the 7 genera pertaining to the Ciliophora phylum, as well as for those genera belonging to the Euryarchaeota (Methanobrevibacter sp.), Chytridiomycota (Neocallimastix sp.) and Fibrobacteres (Fibrobacter sp.) phyla. Twelve microbiota relationship matrices (K) from different microbiome distance metrics were built, aiming to compare its performance within a variance component estimation framework for CH4 and whole microbiome analysis on simulation (n = 1000, 25 replicates) and real data were performed, considering four possible models: an additive genomic model (GBLUP), a microbiome model (MBLUP), a genetic and microbiome effects model (HBLUP) and a genetic, microbiome and genetic × microbiome interaction effects model (HiBLUP). A new term "Holobiability" was defined to refer to the proportion of the phenotypic variance attributable to the host-microbiome holobiont effects. Estimates from real data using HiBLUP varied depending on the K used and ranged between 0.15-0.17, 0.15-0.21 and 0.42-0.59 for heritability, microbiability and holobiability, respectively. The microbiome dataset was aggregated through Principal Component Analysis (PCA) into few principal components (PCs) that were used as proxies of the core metagenome. Part of the variability condensed in these PCs is controlled by the cow genome, with heritability estimates for the first PC (PC1) of ~0.30 at all taxonomic levels, with a large probability (>83%) of the posterior distribution being > 0.20 and with the 95% highest posterior density interval (95%HPD) not containing zero. Most genetic correlation estimates between PC1 and methane were large (>0.70) at all taxonomic levels, with most of the posterior distribution (>82%) being >0.50 and with its 95%HPD not containing zero. These results suggest that rumen's whole metagenome recursively regulate methane emissions in dairy cows, and that both CH4 and the microbiota compositions are partially controlled by the host genotype. The purposed aggregated variables (PCs) could be used in animal breeding programs to reduce methane emissions in future generations.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno