Ayuda
Ir al contenido

Dialnet


Resumen de Transformation of nanocrystals in electrochemical energy technologies

Xiaoting Yu

  • Esta tesis se centra en la síntesis de diferentes tipos de nanocristales, su aplicación a las tecnologías de conversión y almacenamiento de energía, particularmente LIBs, KIBs y DEFCs, y su transformación estructural durante los procesos electroquímicos dentro de estas aplicaciones de almacenamiento y conversión de energía. La morfología y composición de nanocristales de óxidos de metales de transición, bimetálicos e intermetálicos que incroporan fósforo se caracterizan en detalle para seguir las alteraciones durante la aplicación. La comprensión de la correlación entre las propiedades estructurales, químicas y electroquímicas permitirá un diseño más racional de nanomateriales funcionales.

    El primer capítulo ofrece una introducción general al rápido desarrollo y la importancia de las tecnologías de energía renovable en la sociedad moderna. Entre ellas, las tecnologías de conversión y almacenamiento de energía electroquímica son particularmente atractivas en términos de costo, seguridad y respeto al medio ambiente. Se discuten los principios básicos de las tecnologías de baterías de iones de litio, sodio y potasio, incluidas las estructuras de las baterías, los materiales de los electrodos y los mecanismos de trabajo. Además, describo el principio de funcionamiento de las DEFCs y el EOR electrocatalítico. También se explican las estrategias para sintetizar nanocristales de alto rendimiento para aplicaciones de almacenamiento y conversión de energía electroquímica. Finalmente, en este capítulo discuto el fenómeno de la evolución estructural y química de los nanocristales durante las operaciones electroquímicas y cómo se necesita su caracterización en cada sistema para una comprensión profunda de las propiedades y aplicaciones de los nanomateriales. El capítulo 1 también incluye los objetivos de la tesis.

    El Capítulo 2 describe un método de crecimiento simple mediado por semillas a baja temperatura para crecer Mn3O4 en nanoparticulas huecas de Fe3O4. Se lleva a cabo un proceso de sinterizado a temperatura moderada (500 °C) para promover la reacción en estado sólido de las NPs y obtener partículas huecas de MnxFe3-xO4. Al ser usados como materiales de electrodo anódico, la cubierta policristalina, el espacio vacío interno y la gran área de superficie de las NPs de MnxFe3-xO4 pueden amortiguar de manera efectiva el cambio de volumen de los nanocristales durante el proceso de litiación y delitizacion para mejorar la estabilidad y la vida útil del ciclo. Se evalúa la actividad electroquímica de las NPs de MnxFe3-xO4 hacia la reacción de litio y se explora la relación entre la estructura y las propiedades electroquímicas. El excelente rendimiento de las NPs huecas de MnxFe3-xO4 está asociado con su estructura y composición cristalinas, y con la presencia de ligandos carbonizados, que promueven aún más la conductividad eléctrica y acomodan y liberan rápidamente iones de litio mientras retienen una estructura estable incluso después de ciclos continuos de carga/descarga . Este trabajo fue publicado en Nano Energy en 2019.

    El Capítulo 3 vesra sobre el rendimiento de los NPs bimetálicos como ánodos en LIBs y KIBs. NPs monodispersas de CoSn y NiSn se sintetizan mediante co-reducción y se soportan en materiales comerciales de carbono. Los nanocompuestos obtenidos se prueban como materiales anódicos en LIBs de media celda y KIBs y LIBs de celda completa. Los electrodos CoSn@C muestran excelentes capacidades de carga y descarga en media celda y celdas completas LIB. Las capacidades para KIB se estabilizan alrededor de 200 mAh g-1 con alta eficiencia culombiana durante 400 ciclos para CoSn@C y 100 mAh g-1 para NiSn@C durante 300 ciclos. La oxidación de las NPs, la formación de la capa SEI, el vasto cambio de volumen durante la litiación y la delitiación causaron la disminución de las capacidades. Este trabajo fue publicado en Página 4 de 4 ACS Applied Materials & Interfaces en 2020.

    En el capítulo 4, se detalla un enfoque simple para producir NPs intermetálicas de Pd3Pb con geometría cúbica bien definida y un tamaño promedio de 6 nm a 10 nm. Los catalizadores de Pd3Pb/C presentan actividades y estabilidades electrocatalíticas EOR mejoradas. La actividad EOR de las NPs de Pd3Pb se investiga en función de su tamaño a través de técnicas CV y CA. Todos los catalizadores exhiben una disminución de corriente pronunciada durante los primeros 500 s de operación EOR continua, que está asociada con la acumulación de intermedios de reacción fuertemente adsorbidos y el bloqueo relacionado de los sitios de reacción. Los catalizadores pueden reactivarse simplemente ciclando para eliminar eficazmente las especies adsorbidas en la superficie y recuperar la actividad electrocatalítica. Una reorganización de los elementos Pd y Pb ocurre en las NPs de Pd3Pb durante EOR, lo que implica una difusión hacia afuera/hacia adentro de Pd/Pb para equilibrar la estequiometría de la superficie de los NCs, que es impulsada por la diferente afinidad de Pb y Pd hacia el oxígeno y posiblemente el etanol, y la oxidación/reducción electroquímica de Pd. Este trabajo fue publicado en Chemistry of Materials en 2020.

    El Capítulo 5 demuestra la síntesis de NPs coloidales de Pd2Sn que incorporan P a través de la fosforización de las NPs de Pd2Sn con un reactivo altamente activo. El catalizador Pd2Sn:P/C exhibe una actividad significativamente mejorada hacia EOR en medios alcalinos en comparación con Pd2Sn/C, PdP2/C y catalizadores comerciales de Pd/C. La mejora del rendimiento se racionaliza con la ayuda de los cálculos de DFT teniendo en cuenta los diferentes entornos químicos de fósforo. Dependiendo de su estado de oxidación, el fósforo superficial introduce sitios con adsorción de OH de baja energía y/o influye fuertemente en la estructura electrónica del paladio y el estaño para facilitar la oxidación del acetilo al ácido acético, que se considera el paso limitante de la tasa de EOR. El Pd2Sn:P se caracteriza por una superficie rica en Sn y P, que se correlaciona bien con los porcentajes más altos de estaño oxidado y fósforo, y la mayor tendencia a la oxidación de Sn en comparación con Pd. Los cálculos de DFT demuestran que la presencia de P puede inducir una mayor adsorción química de OH- para facilitar la formación de CH3COOH, lo que resulta en un aumento de la actividad EOR. Este trabajo ha sido presentado recientemente.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus