Ayuda
Ir al contenido

Dialnet


Caracterización agronómica y genómica de selecciones obtenidas en un programa de mejora de olivo para resistencia a la verticilosis

  • Autores: Alicia Serrano Gómez
  • Directores de la Tesis: Lorenzo León Moreno (dir. tes.), Belén Román del Castillo (codir. tes.)
  • Lectura: En la Universidad de Córdoba (ESP) ( España ) en 2021
  • Idioma: español
  • Tribunal Calificador de la Tesis: Teresa Millan Valenzuela (presid.), Ana Maria Gómez Caravaca (secret.), Wassim Habib (voc.)
  • Programa de doctorado: Programa de Doctorado en Ingeniería Agraria, Alimentaria, Forestal y del Desarrollo Rural Sostenible por la Universidad de Córdoba y la Universidad de Sevilla
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: Helvia
  • Resumen
    • 1. Introducción o motivación de la tesis En las últimas décadas la olivicultura ha experimentado grandes cambios dirigidos a incrementar la rentabilidad y a reducir los costes de manejo del cultivo del olivo. Estos cambios han consistido principalmente en la intensificación de los olivares tradicionales y en el aumento de la superficie cultivada en todo el mundo. Además, los avances científicos sobre las propiedades saludables de los compuestos del aceite de oliva han desencadenado un aumento de la demanda mundial y el interés por los aceites de oliva vírgenes extra (AOVEs) de alta calidad. No obstante, han surgido también ciertas limitaciones, como la aparición o propagación de enfermedades como la Verticilosis (VO) y la falta de variedades adaptadas a plantaciones intensivas o a una recolección mecanizada.

      En base a lo anterior, una de las líneas de trabajo del programa de mejora de olivo desarrollado en el Centro 'Alameda del Obispo' del Instituto de Investigación y Formación Agraria y Pesquera de Andalucía (IFAPA) es la búsqueda de nuevas variedades resistentes a la VO, con características agronómicas mejoradas y adecuada calidad del aceite. En este sentido, fruto de trabajos realizados en etapas previas, el programa de mejora cuenta con 20 preselecciones potencialmente resistentes y altamente productivas que han pasado a evaluaciones a largo plazo en ensayos comparativos. Esta tesis incluye los trabajos realizados en campo con dichas preselecciones para confirmar su resistencia en condiciones naturales de cultivo y evaluar las características productivas y calidad de sus aceites. Por otra parte, también se ha incluido un estudio a nivel genético de un conjunto de genotipos de diferente procedencia y respuesta a la VO, para tratar de identificar polimorfismos en regiones de genes candidatos para la resistencia.

      2. Contenido de la investigación El primer objetivo de esta tesis consistió en evaluar 20 preselecciones frente al patotipo defoliante de Verticillium dahliae en condiciones semicontroladas (Capítulo 2). Para esta evaluación se realizó un experimento en microparcelas, en el que se plantaron los genotipos seleccionados tanto en suelo libre de inóculo como en suelo infestado artificialmente con microesclerocios de V. dahliae. Los resultados mostraron discrepancias en comparación con la respuesta a la enfermedad obtenida en evaluaciones bajo condiciones controladas, ya que 11 genotipos resultaron susceptibles. Además, las plantas que crecieron sobre el suelo infestado mostraron una reducción del crecimiento y un retraso en la entrada en producción, independientemente del desarrollo de síntomas de la enfermedad.

      Estos genotipos también fueron evaluados en ensayos comparativos instalados en fincas de agricultores distribuidas por la provincia de Jaén (Andalucía, España). Estas fincas estaban infestadas por V. dahliae, por lo que la resistencia a la enfermedad fue reevaluada en condiciones naturales de cultivo. Aunque los resultados de dicha evaluación no constan en esta, los datos registrados están siendo analizados para una futura publicación. Sin embargo, como resultado de ellos, se seleccionaron tres genotipos por su mayor resistencia a la enfermedad (IFAPA111-2, IFAPA117-117 e IFAPA117-120) y la variedad de referencia ‘Picual’ se seleccionaron para realizar extracción de aceite y analizar su composición.

      Un primer análisis, incluido en el capítulo 3 de la tesis, consistió en evaluar la variabilidad de 66 compuestos químicos, la estabilidad oxidativa y los atributos sensoriales en aceites de 4 genotipos diferentes (las selecciones IFAPA111-2, IFAPA117-117 e IFAPA117-120 y la variedad de referencia ‘Picual’) cultivados en 4 localidades (Córdoba, Úbeda, Begíjar y Arjona). El análisis estadístico aplicado ha revelado la posibilidad de predecir de forma precisa la estabilidad del AOVE en función de su composición, influyendo positivamente el contenido de ácido oleico y 3,4-DHPEA-EA. Por otra parte, para los atributos sensoriales no se ha observado una clara correlación con la composición química del AOVE y, tampoco, un efecto significativo del genotipo o el ambiente de cultivo.

      El segundo análisis se centró en determinar de forma más específica el efecto de los factores genético (G) y ambiental (A), así como la interacción de ambos (G x A), en la composición volátil de los AOVEs, un tipo de estudio que no se había realizado previamente en olivo y que ha sido descrito en el Capítulo 4 de la tesis doctoral. Los resultados revelaron que el factor genético influye principalmente en el perfil volátil y el factor ambiental afecta al contenido total, mientras que el efecto G x A sólo se ha observado en los compuestos C5/LA y ésteres. Atendiendo a la fracción volátil, se ha demostrado que las selecciones del programa de mejora podrían ser una alternativa para la diversificación de variedades y ampliar la oferta comercial de los AOVEs. Por último, en el Capítulo 5 se describe el estudio a nivel genético realizado para analizar las diferencias genéticas entre 77 genotipos con diferente nivel de resistencia a la enfermedad, incluyendo variedades del Banco Mundial de Germoplasma de Olivo de IFAPA, acebuches y subespecies afines (cerasiformis y guanchica) de la Colección de olivo silvestre y progenies del programa de mejora. Concretamente, se han estudiado polimorfismos en fragmentos de 7 genes asociados a diferentes mecanismos de respuesta a la Verticilosis. En total se han identificado 92 SNPs y 2 InDels. Los SNPs detectados en el gen TLP1 podrían ser de utilidad para distinguir entre subespecies y una delección en el gen PFN2 podría estar relacionada con la respuesta de resistencia. Estas diferencias nucleotídicas podrían contribuir al establecimiento de marcadores para la gestión de colecciones de germoplasma y la selección en programas de mejora genética de olivo.

      3. Conclusiones El desarrollo de nuevas variedades de olivo es un proceso largo que requiere de ensayos comparativos en diferentes condiciones, ya que la respuesta a la enfermedad o las características agronómicas pueden verse afectadas por el ambiente de cultivo. En el caso de la evaluación de resistencia, se han observado discrepancias en la respuesta de algunos genotipos dependiendo de las condiciones de evaluación. En este sentido, algunas selecciones potencialmente resistentes en condiciones controladas en cámaras de cultivo han resultado susceptibles en condiciones semicontroladas en microparcelas. Al mismo tiempo, se ha observado que los efectos negativos de la Verticilosis, como el retraso en la entrada en producción y la reducción del crecimiento, son menos acentuados en genotipos resistentes, independientemente del desarrollo de síntomas de la enfermedad.

      En cuando a la calidad de los aceites de las selecciones resistentes a la Verticilosis, se ha observado que la variabilidad en la composición de los aceites es una característica principalmente dependiente del factor genético para la mayoría de los compuestos, lo que indica que los programas de mejora pueden contribuir al aumento de diversidad en la oferta de los aceites de oliva vírgenes extra. Así, los aceites extraídos de la selección ‘IFAPA111-2’ podrían ser similares al de ‘Picual’ y claramente diferenciados de las selecciones ‘IFAPA117-117’ e ‘IFAPA117-120’. Así mismo, se ha observado que la estabilidad oxidativa de los aceites de oliva vírgenes extra (vida útil) podría ser predecible en función de la composición de estos, ejerciendo un efecto positivo el contenido en ácido oleico, escualeno y compuestos fenólicos. Mientras que las características sensoriales de frutado, amargo y picante, no han resultado dependientes de los compuestos analizados.

      A pesar del efecto mayoritario del factor genético, el contenido en compuestos volátiles y fenólicos se ha visto principalmente influenciado por el ambiente. Además, se ha observado un efecto significativo de la interacción genotipo por ambiente sobre algunos compuestos del aceite de oliva virgen extra, lo que demuestra la necesidad de realizar ensayos comparativos en condiciones naturales de cultivo para caracterizar la calidad de los aceites de las selecciones del programa de mejora.

      Los estudios a nivel genético han identificado varios polimorfismos en genes candidatos para la resistencia a la VO. Sin embargo, su implicación en la respuesta del olivo a la infección por el hongo V. dahliae debe ser validada en futuros estudios, ya que dicha respuesta es muy variable entre genotipos e influenciable por las condiciones ambientales.

      Como resultado de todos estos trabajos de caracterización agronómica y de resistencia se ha solicitado el registro de tres nuevas variedades que serán adecuadas para su plantación en zonas donde haya riesgo de incidencia de Verticilosis y con unas características diferenciadas de sus aceites. Igualmente, el procedimiento llevado a cabo para la obtención de variedades resistentes a la Verticilosis podría aplicarse también para el desarrollo de variedades resistentes a otras enfermedades del olivo, como Xylella fastidiosa, realizando las evaluaciones específicas en cada etapa del programa de mejora de olivo.

      4. Bibliografía Andrewes, P., Busch, J. L. H. C., de Joode, T., Groenewegen, A., & Alexandre, H. (2003). Sensory Properties of Virgin Olive Oil Polyphenols: Identification of Deacetoxy-ligstroside Aglycon as a Key Contributor to Pungency. Journal of Agricultural and Food Chemistry, 51(5), 1415–1420.

      Angerosa F, Servili M, Selvaggini R, Taticchi A, Esposto S, and Montedoro G. (2004). Volatile compounds in virgin olive oil: occurrence and their relationship with the quality. J. Chromatogr. A 1054:17–31.

      Angerosa, F. (2002). Influence of volatile compounds on virgin olive oil quality evaluated by analytical approaches and sensor panels. European Journal of Lipid Science and Technology, 104, 639–660.

      Aparicio, R., Roda, L., Albi, M. A., & Gutiérrez, F. (1999). Effect of Various Compounds on Virgin Olive Oil Stability Measured by Rancimat. Journal of Agricultural and Food Chemistry, 47(10), 4150–4155.

      Aparicio‐Ruiz, R., García‐González, D.L., Lobo‐Prieto, A., Aparicio, R., (2019). Andalusian Protected Designations of Origin of Virgin Olive Oil: The Role of Chemical Composition in Their Authentication. European Journal of Lipid Science and Technology 121, 1800133.

      Arias-Calderón, R., León, L., Bejarano-Alcázar, J., Belaj, A., De la Rosa, R., and Rodríguez-Jurado, D. (2015). Resistance to Verticillium wilt in olive progenies from open-pollination. Scientia Horticulturae. 185:34–42.

      Arias-Calderón, R., Rodríguez-Jurado, D., Bejarano-Alcázar, J., Belaj, A., De la Rosa, R., and León, L. (2015). Evaluation of Verticillium wilt resistance in selections from olive breeding crosses. Euphytica. 206:619–629.

      Arias-Calderón, R., Rouiss, H., Rodríguez-Jurado, D., De la Rosa, R., and León, L. (2014). Variability and heritability of fruit characters in olive progenies from open-pollination. Scientia Horticulturae. 169:94–98.

      Arias-Calderón, R., Rodríguez-Jurado, D., León, L., Bejarano-Alcázar, J., De la Rosa, R., Belaj, A., (2015). Pre-breeding for resistance to Verticillium wilt in olive: Fishing in the wild relative gene pool. Crop Protection 75, 25–33.

      Baccouri, O., Cerretani, L., Bendini, A., Caboni, M.F., Zarrouk, M., Pirrone, L,. and Miled, D.D.B. (2007). Preliminary chemical characterization of Tunisian monovarietal virgin olive oils and comparison with Sicilian ones. Eur J Lipid Sci Technol 109:1208–1217.

      Bajoub, A., Sánchez-Ortiz, A., Ajal, E.A., Ouazzani, N., Fernández-Gutiérrez, A., Beltrán, G., and Carrasco-Pancorbo, A. First comprehensive characterization of volatile profile of north Moroccan olive oils: A geographic discriminant approach. Food Res Int 76:410–417 (2015).

      Bak, S., Beisson, F., Bishop, G., Hamberger, B., Höfer, R., Paquette, S., Werck-Reichhart, D., (2011). Cytochromes P450. Arabidopsis Book 9.

      Baldoni, L., Tosti, N., Ricciolini, C., Belaj, A., Arcioni, S., Pannelli, G., Germana, M.A., Mulas, M., Porceddu, A., (2006). Genetic Structure of Wild and Cultivated Olives in the Central Mediterranean Basin. Ann Bot 98, 935–942.

      Barranco Navero, D., International Olive Oil Council, (2000). World catalogue of olive varieties. International Olive Oil Council, Madrid, Spain.

      Barranco, D., Rallo, L. (2000). Olive Cultivars in Spain. Horttechnology, 10(1), 107–110.

      Belaj, A., Domínguez-García, M. del C., Atienza, S.G., Martín Urdíroz, N., De la Rosa, R., Satovic, Z., Martín, A., Kilian, A., Trujillo, I., Valpuesta, V., Del Río, C., (2012). Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Genetics & Genomes 8, 365–378.

      Belaj, A., León, L., Satovic, Z., de la Rosa, R., (2011). Variability of wild olives (Olea europaea subsp. europaea var. sylvestris) analyzed by agro-morphological traits and SSR markers. Scientia Horticulturae 129, 561–569.

      Belaj, A., Muñoz-Díez, C., Baldoni, L., Porceddu, A., Barranco, D., Satovic, Z., (2007). Genetic Diversity and Population Structure of Wild Olives from the North-western Mediterranean Assessed by SSR Markers. Ann Bot 100, 449–458.

      Belaj, A., Muñoz-Díez, C., Baldoni, L., Satovic, Z., Barranco, D., (2010). Genetic diversity and relationships of wild and cultivated olives at regional level in Spain. Scientia Horticulturae 124, 323–330.

      Belaj, A., Rosa, R. de la, Lorite, I.J., Mariotti, R., Cultrera, N.G.M., Beuzón, C.R., González-Plaza, J.J., Muñoz-Mérida, A., Trelles, O., Baldoni, L., (2018). Usefulness of a New Large Set of High Throughput EST-SNP Markers as a Tool for Olive Germplasm Collection Management, in: Front. Plant Sci.

      Beltrán, G., Ruano, M. T., Jiménez, A., Uceda, M., & Aguilera, M. P. (2007). Evaluation of virgin olive oil bitterness by total phenol content analysis. European Journal of Lipid Science and Technology, 109(3), 193–197.

      Ben Brahim S, Amanpour A, Chtourou F, Kelebek H, Selli S, and Bouaziz M. (2018). Gas Chromatography–Mass Spectrometry–Olfactometry To Control the Aroma Fingerprint of Extra Virgin Olive Oil from Three Tunisian Cultivars at Three Harvest Times. J Agric Food Chem 66:2851–2861.

      Ben Mansour, A., Chtourou, F., Khbou, W., Flamini, G., & Bouaziz, M. (2017). Phenolic and volatile compounds of Neb Jmel olive oil cultivar according to their geographical origin using chemometrics. European Food Research and Technology, 243(3), 403–418.

      Bendini, A., Cerretani, L., Carrasco-Pancorbo, A., Gómez-Caravaca, A.M., Segura-Carretero, A., Fernández-Gutiérrez, A., & Lercker, G. (2007). Phenolic molecules in virgin olive oils: a survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. Molecules, 12(8), 1679-1719.

      Besnard, G., El Bakkali, A., (2014). Sequence analysis of single-copy genes in two wild olive subspecies: nucleotide diversity and potential use for testing admixture. Genome 57, 145–153.

      Besnard, G., García-Verdugo, C., Rubio De Casas, R., Treier, U.A., Galland, N., Vargas, P., (2008). Polyploidy in the Olive Complex (Olea europaea): Evidence from Flow Cytometry and Nuclear Microsatellite Analyses. Ann. Bot. 101, 25–30.

      Besnard, G., Terral, J.-F., Cornille, A., (2018). On the origins and domestication of the olive: a review and perspectives. Ann Bot 121, 385–403.

      Bettaieb, I., Bouktila, D., (2020). Genome-wide analysis of NBS-encoding resistance genes in the Mediterranean olive tree (Olea europaea subsp. europaea var. europaea): insights into their molecular diversity, evolution and function. Tree Genetics & Genomes 16, 23.

      Birem, F., Alcántara-Vara, E., and López-Escudero, F. J. (2016). Water consumption and vegetative growth progress in resistant and susceptible olive cultivars infected by Verticillium dahliae. AS. 07:230–238.

      Biton, I., Doron-Faigenboim, A., Jamwal, M., Mani, Y., Eshed, R., Rosen, A., Sherman, A., Ophir, R., Lavee, S., Avidan, B., Ben-Ari, G., (2015). Development of a large set of SNP markers for assessing phylogenetic relationships between the olive cultivars composing the Israeli olive germplasm collection. Mol Breeding 35, 107.

      Blasi, F., Pollini, L., and Cossignani, L. (2019). Varietal Authentication of Extra Virgin Olive Oils by Triacylglycerols and Volatiles Analysis. Foods 8:58.

      Blazakis, K.N., Kosma, M., Kostelenos, G., Baldoni, L., Bufacchi, M., Kalaitzis, P., (2017). Description of olive morphological parameters by using open access software. Plant Methods 13.

      Borges, T. H., Serna, A., López, L. C., Lara, L., Nieto, R., & Seiquer, I. (2019). Composition and Antioxidant Properties of Spanish Extra Virgin Olive Oil Regarding Cultivar, Harvest Year and Crop Stage. Antioxidants, 8(7), 217.

      Brito, G., Loureiro, J., Lopes, T., Rodriguez, E., Santos, C.,( 2008). Genetic characterisation of olive trees from Madeira Archipelago using flow cytometry and microsatellite markers. Genet Resour Crop Evol 55, 657–664.

      Bubici, G., and Cirulli, M. 2014. Natural recovery from Verticillium wilt in olive: can it be exploited in a control strategy? Plant Soil. 381, 85–94.

      Butterfield, E. J., and DeVay, J. E. (1977). Reassessment of soil assays for Verticillium dahliae. Phytopathology 67, 1073-1078.

      Gómez-Lama Cabanás, C., Schilirò, E., Valverde-Corredor, A., Mercado-Blanco, J., (2015). Systemic responses in a tolerant olive (Olea europaea L.) cultivar upon root colonization by the vascular pathogen Verticillium dahliae. Front. Microbiol. 6, 928-941.

      Cai, Y., Cai, X., Wang, Q., Wang, P., Zhang, Yu, Cai, C., Xu, Y., Wang, K., Zhou, Z., Wang, C., Geng, S., Li, B., Dong, Q., Hou, Y., Wang, H., Ai, P., Liu, Z., Yi, F., Sun, M., An, G., Cheng, J., Zhang, Yuanyuan, Shi, Q., Xie, Y., Shi, X., Chang, Y., Huang, F., Chen, Y., Hong, S., Mi, L., Sun, Q., Zhang, L., Zhou, B., Peng, R., Zhang, X., Liu, F. (2020). Genome sequencing of the Australian wild diploid species Gossypium australe highlights disease resistance and delayed gland morphogenesis. Plant Biotechnology Journal 18, 814-828.

      Calderón, R., Lucena, C., Trapero-Casas, J. L., Zarco-Tejada, P. J., and Navas-Cortés, J. A. (2014). Soil temperature determines the reaction of olive cultivars to Verticillium dahliae pathotypes. PLoS ONE. 9:e110664.

      Campestre, C., Angelini, G., Gasbarri, C., & Angerosa, F. (2017). The Compounds Responsible for the Sensory Profile in Monovarietal Virgin Olive Oils. Molecules, 22 (11), 1833. Caporale G, Policastro S, Carlucci A, and Monteleone E. (2006). Consumer expectations for sensory properties in virgin olive oils. Food Qual Prefer 17:116–125 Carrasco-Pancorbo, A., Cerretani, L., Bendini, A., Segura-Carretero, A., Del Carlo, M., Gallina-Toschi, T., Lercker, G., Compagnone, D., & Fernández-Gutiérrez, A. (2005). Evaluation of the Antioxidant Capacity of Individual Phenolic Compounds in Virgin Olive Oil. Journal of Agricultural and Food Chemistry, 53(23), 8918–8925.

      Cavalli, J.F., Fernandez, X., Lizzani-Cuvelier, L., and Loiseau, A.M. (2004). Characterization of volatile compounds of French and Spanish virgin olive oils by HS-SPME: Identification of quality-freshness markers. Food Chem 88:151–157.

      Cecchi, T. and Alfei, B. (2013). Volatile profiles of Italian monovarietal extra virgin olive oils via HS-SPME–GC–MS: Newly identified compounds, flavors molecular markers, and terpenic profile. Food Chem 141:2025–2035.

      Cenci, A., Rouard, M., (2017). Evolutionary Analyses of GRAS Transcription Factors in Angiosperms. Front. Plant Sci. 8.

      Cerretani, L., Salvador, M. D., Bendini, A., & Fregapane, G. (2008). Relationship Between Sensory Evaluation Performed by Italian and Spanish Official Panels and Volatile and Phenolic Profiles of Virgin Olive Oils. Chemosensory Perception, 1(4), 258–267.

      Chambers, E., & Koppel, K. (2013). Associations of Volatile Compounds with Sensory Aroma and Flavor: The Complex Nature of Flavor. Molecules, 18(5), 4887–4905.

      Cherfaoui M, Cecchi T, Keciri S, and Boudriche L. (2018). Volatile compounds of Algerian extra-virgin olive oils: Effects of cultivar and ripening stage. Int J Food Prop 21:36–49 .

      Cirulli, M., Colella, C., D’Amico, M., Amenduni, M., and Bubici, G. (2008). Comparison of screening methods for the evaluation of olive resistance to Verticillium dahliae Kleb. Journal of Plant Pathology. 90:7–14.

      Clement, M., Posada, D., Crandall, K.A., (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 1657–1659.

      Cultrera, N.G.M., Sarri, V., Lucentini, L., Ceccarelli, M., Alagna, F., Mariotti, R., Mousavi, S., Ruiz, C.G., Baldoni, L., (2019). High Levels of Variation Within Gene Sequences of Olea europaea L. Front. Plant Sci. 9.

      D’Agostino, N., Taranto, F., Camposeo, S., Mangini, G., Fanelli, V., Gadaleta, S., Miazzi, M.M., Pavan, S., di Rienzo, V., Sabetta, W., Lombardo, L., Zelasco, S., Perri, E., Lotti, C., Ciani, E., Montemurro, C., (2018). GBS-derived SNP catalogue unveiled wide genetic variability and geographical relationships of Italian olive cultivars. Scientific Reports 8, 1–13.

      de la Rosa, R., Angiolillo, A., Guerrero, C., Pellegrini, M., Rallo, L., Besnard, G., Bervillé, A., Martin, A., Baldoni, L., (2003). A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theor Appl Genet 106, 1273–1282.

      de la Rosa, R., Arias-Calderón, R., Velasco, L., & León, L. (2016). Early selection for oil quality components in olive breeding progenies: Olive breeding for oil quality components. European Journal of Lipid Science and Technology, 118(8), 1160–1167.

      Diez, C.M., Trujillo, I., Martinez-Urdiroz, N., Barranco, D., Rallo, L., Marfil, P., Gaut, B.S., (2015). Olive domestication and diversification in the Mediterranean Basin. New Phytologist 206, 436–447.

      Fernández-Escobar R., De la Rosa R., León L., Gómez J.A., Testi F., Orgaz M., Gil-Ribes J.A., Quesada-Moraga E., Trapero A., Msallem M. 2013. Evolution and sustainability of the olive production systems. In : Arcas N. (ed.), Arroyo López F.N. (ed.), Caballero J. (ed.), D'Andria R. (ed.), Fernández M. (ed.), Fernández-Escobar R. (ed.), Garrido A. (ed.), López-Miranda J. (ed.), Msallem M. (ed.), Parras M. (ed.), Rallo L.(ed.), Zanoli R. (ed.). Present and future of the Mediterranean olive sector. Zaragoza: CIHEAM / IOC, p. 11-42 (Options Méditerranéennes: Série A. Séminaires Méditerranéens; n. 106).

      Francisco, V., Ruiz-Fernández, C., Lahera, V., Lago, F., Pino, J., Skaltsounis, L., González-Gay, M. A., Mobasheri, A., Gómez, R., Scotece, M., & Gualillo, O. (2019). Natural Molecules for Healthy Lifestyles: Oleocanthal from Extra Virgin Olive Oil. Journal of Agricultural and Food Chemistry, 67(14), 3845–3853.

      Fu, Y.X., Li, W.H., (1993). Statistical tests of neutrality of mutations. Genetics 133, 693–709.

      Ganal, M.W., Altmann, T., Röder, M.S., (2009). SNP identification in crop plants. Curr. Opin. Plant Biol. 12, 211–217.

      García-Ruiz, G. M., Trapero, C., Del Rio, C., and López-Escudero, F. J. 2014. Evaluation of resistance of Spanish olive cultivars to Verticillium dahliae in inoculations conducted in greenhouse. Phytoparasitica. 42:205–212.

      García-Ruiz, G. M., Trapero, C., Varo-Suárez, Á., Trapero, A., and López-Escudero, F. J. 2015. Identifying resistance to Verticillium wilt in local Spanish olive cultivars. Phytopathologia Mediterranea. 54:453-460.

      García-Vico, L., Belaj, A., Sánchez-Ortiz, A., Martínez-Rivas, J., Pérez, A., & Sanz, C. (2017). Volatile Compound Profiling by HS-SPME/GC-MS-FID of a Core Olive Cultivar Collection as a Tool for Aroma Improvement of Virgin Olive Oil. Molecules, 22(1), 141.

      Genovese, A., Caporaso, N., Leone, T., Paduano, A., Mena, C., Perez-Jimenez, M. A., & Sacchi, R. (2019). Use of odorant series for extra virgin olive oil aroma characterisation: Aroma of extra virgin olive oil by odorant series. Journal of the Science of Food and Agriculture, 99(3), 1215–1224.

      Gharbi, Y., Barkallah, M., Bouazizi, E., Gdoura, R., Triki, M.A., (2017). Differential biochemical and physiological responses of two olive cultivars differing by their susceptibility to the hemibiotrophic pathogen Verticillium dahliae. Physiological and Molecular Plant Pathology 97, 30–39.

      Gómez‐Gálvez, F. J., Hidalgo‐Moya, J. C., Vega‐Macías, V., Hidalgo‐Moya, J. J., and Rodríguez‐Jurado, D. (2019). Reduced introduction of Verticillium dahliae through irrigation systems and accumulation in soil by injection of peroxygen-based disinfectants. Plant Pathology. 68:116–126.

      Gómez‐Gálvez, F. J., Vega‐Macías, V., Hidalgo-Moya, J. C., Hidalgo‐Moya, J. J., and Rodríguez‐Jurado, D. (2020). Application to soil of disinfectants through irrigation reduces Verticillium dahliae in the soil and verticillium wilt of olive. Plant Pathology. 69:272–283.

      Gong, Q., Yang, Z., Wang, X., Butt, H.I., Chen, E., He, S., Zhang, C., Zhang, X., Li, F., (2017). Salicylic acid-related cotton (Gossypium arboreum) ribosomal protein GaRPL18 contributes to resistance to Verticillium dahliae. BMC Plant Biol. 17, 59.

      Goud, J.-K. C., Termorshuizen, A. J., and van Bruggen, A. H. C. (2011). Verticillium wilt in nursery trees: damage thresholds, spatial and temporal aspects. Eur J Plant Pathol. 131:451–465.

      Gouvinhas, I., Machado, N., Sobreira, C., Domínguez-Perles, R., Gomes, S., Rosa, E., & Barros, A. (2017). Critical Review on the Significance of Olive Phytochemicals in Plant Physiology and Human Health. Molecules, 22(11), 1986.

      Gros‐Balthazard, M., Besnard, G., Sarah, G., Holtz, Y., Leclercq, J., Santoni, S., Wegmann, D., Glémin, S., Khadari, B., (2019). Evolutionary transcriptomics reveals the origins of olives and the genomic changes associated with their domestication. The Plant Journal 100, 143–157.

      Guo, Y., Wu, H., Li, X., Li, Q., Zhao, X., Duan, X., An, Y., Lv, W., An, H., (2017). Identification and expression of GRAS family genes in maize (Zea mays L.). PLOS ONE 12, e0185418.

      Gutiérrez Rosales, F., Perdiguero, S., Gutiérrez, R., & Olias, J. M. (1992). Evaluation of the bitter taste in virgin olive oil. Journal of the American Oil Chemists’ Society, 69(4), 394–395.

      Habib, W., Choueiri, E., Baroudy, F., Tabet, D., Gerges, E., Saab, C., et al. (2017). Soil inoculum density of Verticillium dahliae and Verticillium wilt of olive in Lebanon. Annals of Applied Biology. 170:150–159.

      Haddada, F.M., Manai, H., Daoud D., Fernandez, X., Lizzani-Cuvelier, L., and Zarrouk, M. (2007). Profiles of volatile compounds from some monovarietal Tunisian virgin olive oils. Comparison with French PDO. Food Chem 103:467–476.

      Huisman, O. C., and Ashworth, L. J. (1974). Quantitative assessment of Verticillium albo-atrum in field soils: procedural and substrate improvements. Phytopathology 64:1043-1044.

      İpek, A., Yılmaz, K., Sıkıcı, P., Tangu, N.A., Öz, A.T., Bayraktar, M., İpek, M., Gülen, H., (2016). SNP Discovery by GBS in Olive and the Construction of a High-Density Genetic Linkage Map. Biochem Genet 54, 313–325.

      Issaoui, M., Flamini, G., Brahmi, F., Dabbou, S., Hassine, K. B., Taamali, A., Chehab, H., Ellouz, M., Zarrouk, M., & Hammami, M. (2010). Effect of the growing area conditions on differentiation between Chemlali and Chétoui olive oils. Food Chemistry, 119(1), 220–225.

      Jiménez-Díaz, R. M., Cirulli, M., Bubici, G., del Mar Jiménez-Gasco, M., Antoniou, P. P., and Tjamos, E. C. (2011). Verticillium wilt, a major threat to olive production: current status and future prospects for its management. Plant Disease. 96:304–329.

      Jiménez-Fernández, D., Trapero-Casas, J. L., Landa, B. B., Navas-Cortés, J. A., Bubici, G., Cirulli, M., et al. (2016). Characterization of resistance against the olive-defoliating Verticillium dahliae pathotype in selected clones of wild olive. Plant Pathol. 65:1279–1291.

      Jiménez-Ruiz, J., Leyva-Pérez, M. de la O., Schilirò, E., Barroso, J.B., Bombarely, A., Mueller, L., Mercado-Blanco, J., Luque, F., (2017). Transcriptomic Analysis of Olea europaea L. Roots during the Verticillium dahliae Early Infection Process. The Plant Genome 10, 0.

      Kalua, C.M., Allen, M.S., Bedgood, D.R., Bishop, A.G., Prenzler, P.D., and Robards, K. (2007). Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem 100:273–286.

      Kassa, A., Konrad, H., Geburek, T., (2019). Molecular diversity and gene flow within and among different subspecies of the wild olive (Olea europaea L.): A review. Flora 250, 18–26.

      Kaya, H.B., Akdemir, D., Lozano, R., Cetin, O., Sozer Kaya, H., Sahin, M., Smith, J.L., Tanyolac, B., Jannink, J.-L., (2019). Genome wide association study of 5 agronomic traits in olive (Olea europaea L.). Sci Rep 9.

      Kaya, H.B., Cetin, O., Kaya, H., Sahin, M., Sefer, F., Kahraman, A., Tanyolac, B., (2013). SNP Discovery by Illumina-Based Transcriptome Sequencing of the Olive and the Genetic Characterization of Turkish Olive Genotypes Revealed by AFLP, SSR and SNP Markers. PLoS One 8.

      Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., Drummond, A., (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.

      Kesen S, Kelebek H, and Selli S. (2014). Characterization of the Key Aroma Compounds in Turkish Olive Oils from Different Geographic Origins by Application of Aroma Extract Dilution Analysis (AEDA). J Agric Food Chem 62:391–401.

      Keykhasaber, M., Thomma, B. P. H. J., and Hiemstra, J. A. (2018). Verticillium wilt caused by Verticillium dahliae in woody plants with emphasis on olive and shade trees. Eur J Plant Pathol. 150:21–37.

      Kiralan M, Ozkan G, Koyluoglu F, Ugurlu HA, Bayrak A, and Kiritsakis A. Effect of cultivation area and climatic conditions on volatiles of virgin olive oil. Eur J Lipid Sci Technol 114:552–557 (2012).

      Landa, B. B., Pérez, A. G., Luaces, P., Montes-Borrego, M., Navas-Cortés, J. A., and Sanz, C. (2019). Insights into the effect of Verticillium dahliae defoliating-pathotype infection on the content of phenolic and volatile compounds related to the sensory properties of virgin olive oil. Front. Plant Sci. 10:232.

      León, L., Arias-Calderón, R., de la Rosa, R., Khadari, B., Costes, E., (2016). Optimal spatial and temporal replications for reducing environmental variation for oil content components and fruit morphology traits in olive breeding. Euphytica 207, 675–684.

      León, L., De la Rosa, R. de la, Barranco, D., and Rallo, L. (2007). Breeding for early bearing in olive. HortScience. 42:499–502.

      León, L., de la Rosa, R., Velasco, L., & Belaj, A. (2018). Using Wild Olives in Breeding Programs: Implications on Oil Quality Composition. Frontiers in Plant Science, 9, 232.

      Levin, A. G., Lavee, S., and Tsror, L. (2003). Epidemiology of Verticillium dahliae on olive (cv. Picual) and its effect on yield under saline conditions. Plant Pathology. 52:212–218.

      Leyva-Pérez, M. de la O., Jiménez-Ruiz, J., Gómez-Lama Cabanás, C., Valverde-Corredor, A., Barroso, J.B., Luque, F., Mercado-Blanco, J., (2018). Tolerance of olive (Olea europaea) cv Frantoio to Verticillium dahliae relies on both basal and pathogen-induced differential transcriptomic responses. New Phytol 217, 671–686.

      Li, J., Staiger, C.J., (2018). Understanding Cytoskeletal Dynamics During the Plant Immune Response. Annu. Rev. Phytopathol. 56, 513–533.

      Librado, P., Rozas, J., (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.

      López-Escudero, F. J., and Blanco-López, M. A. (2005). Recovery of young olive trees from Verticillium dahliae. Eur J Plant Pathol. 113:367–375.

      López-Escudero, F. J., and Blanco-López, M. A. (2007). Relationship between the inoculum density of Verticillium dahliae and the progress of Verticillium wilt of Olive. Plant Disease. 91:1372–1378.

      López-Escudero, F. J., and Mercado-Blanco, J. (2011). Verticillium wilt of olive: a case study to implement an integrated strategy to control a soil-borne pathogen. Plant Soil. 344:1–50.

      López-Escudero, F. J., Blanco-López, M. Á., Rincón, C. D. R., and Reig, J. M. C. (2007). Response of olive cultivars to stem puncture inoculation with a defoliating pathotype of Verticillium dahliae. HortScience. 42:294–298.

      López-Escudero, F. J., del Río, C., Caballero, J. M., and Blanco-López, M. A. (2004). Evaluation of olive cultivars for resistance to Verticillium dahliae. European Journal of Plant Pathology. 110, 79–85.

      López-Escudero, F. J., Mercado-Blanco, J., Roca, J. M., Valverde-Corredor, A., and Blanco-López, A. M. (2010). Verticillium wilt of olive in the Guadalquivir Valley (Southern Spain): relations with some agronomical factors and spread of Verticillium dahliae. Phytopathologia Mediterranea. 49:370–380.

      Lukić, I., Carlin, S., Horvat, I., and Vrhovsek, U. (2019). Combined targeted and untargeted profiling of volatile aroma compounds with comprehensive two-dimensional gas chromatography for differentiation of virgin olive oils according to variety and geographical origin. Food Chem 270:403–414.

      Lukić, I., Horvat, I., Godena, S., Krapac, M., Lukić, M., Vrhovsek, U., & Brkić Bubola, K. (2018). Towards understanding the varietal typicity of virgin olive oil by correlating sensory and compositional analysis data: a case study. Food Research International, 112, 78–89.

      Luna, G., Morales, M.T., and Aparicio, R. (2006). Characterisation of 39 varietal virgin olive oils by their volatile compositions. Food Chem 98:243–252.

      Mammadov, J., Aggarwal, R., Buyyarapu, R., Kumpatla, S., (2012). SNP Markers and Their Impact on Plant Breeding. International Journal of Plant Genomics 2012, 1–11.

      Mansour, A.B., Gargouri, B., Flamini, G., and Bouaziz, M. (2015). Effect of Agricultural Sites on Differentiation between Chemlali and Neb Jmel Olive Oils. J Oleo Sci 64:381–392 Martos-Moreno, C., López-Escudero, F. J., and Blanco-López, M. A. (2006). Resistance of olive cultivars to the defoliating pathotype of Verticillium dahliae. HortScience. 41, 1313–1316.

      Mateos, R., Cert, A., Pérez-Camino, M. C., & García, J. M. (2004). Evaluation of virgin olive oil bitterness by quantification of secoiridoid derivatives. Journal of the American Oil Chemists’ Society, 81(1), 71–75.

      Mateos, R., Domínguez, M. M., Espartero, J. L., & Cert, A. (2003). Antioxidant Effect of Phenolic Compounds, α-Tocopherol, and Other Minor Components in Virgin Olive Oil. Journal of Agricultural and Food Chemistry, 51(24), 7170–7175.

      Mateos, R., Espartero, J. L., Trujillo, M., Rios, J. J., León Camacho, M., Alcudia, F., & Cert, A. (2001). Determination of phenols, flavones, and lignans in virgin olive oils by solid-phase extraction and high-performance liquid chromatography with diode array ultraviolet detection. Journal of Agricultural and Food Chemistry, 49 (5), 2185–2192.

      Melucci D, Bendini A, Tesini F, Barbieri S, Zappi A, Vichi S, Conte L, and Gallina Toschi T. Rapid direct analysis to discriminate geographic origin of extra virgin olive oils by flash gas chromatography electronic nose and chemometrics. Food Chem 204:263–273 (2016).

      Mercado-Blanco, J., Collado-Romero, M., Parrilla-Araujo, S., Rodríguez-Jurado, D., Jiménez-Díaz, R.M., (2003). Quantitative monitoring of colonization of olive genotypes by Verticillium dahliae pathotypes with real-time polymerase chain reaction. Physiological and Molecular Plant Pathology, 63 (2), 91-105.

      Miho, H., Moral, J., López-González, M. A., Díez, C. M., & Priego-Capote, F. (2020). The phenolic profile of virgin olive oil is influenced by malaxation conditions and determines the oxidative stability. Food Chemistry, 314, 126183.

      Montes-Osuna, N., and Mercado-Blanco, J. 2020. Verticillium wilt of olive and its control: What did we learn during the last decade?. Plants. 9:735.

      Munis, M.F.H., Tu, L., Deng, F., Tan, J., Xu, L., Xu, S., Long, L., Zhang, X., (2010). A thaumatin-like protein gene involved in cotton fiber secondary cell wall development enhances resistance against Verticillium dahliae and other stresses in transgenic tobacco. Biochemical and Biophysical Research Communications 393, 38–44.

      Narváez, I., Pliego Prieto, C., Palomo-Ríos, E., Fresta, L., Jiménez-Díaz, R.M., Trapero-Casas, J.L., López-Herrera, C., Arjona-López, J.M., Mercado, J.A., Pliego-Alfaro, F., 2020. Heterologous Expression of the AtNPR1 Gene in Olive and Its Effects on Fungal Tolerance. Front. Plant Sci. 11.

      Navas-Cortés, J. A., Landa, B. B., Mercado-Blanco, J., Trapero-Casas, J. L., Rodríguez-Jurado, D., and Jiménez-Díaz, R. M. (2008). Spatiotemporal analysis of spread of infections by Verticillium dahliae pathotypes within a high tree density olive orchard in southern Spain. Phytopathology. 98:167–180.

      Navas-López, J.F., León, L., Trentacoste, E.R., and de la Rosa R. (2019). Multi-environment evaluation of oil accumulation pattern parameters in olive. Plant Physiol Biochem 139:485–494.

      Nei, M., Gojobori, T., (1986). Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3, 418–426.

      Nicolaï, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K. I., & Lammertyn, J. (2007). Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biology and Technology, 46(2), 99–118.

      Oliver-Pozo, C., Aparicio-Ruiz, R., Romero, I., García-González, D.L., (2015). Analysis of Volatile Markers for Virgin Olive Oil Aroma Defects by SPME-GC/FID: Possible Sources of Incorrect Data. J. Agric. Food Chem. 63:48, 10477–10483.

      Oueslati, I., Haddada, F.M., Manaï, H., Zarrouk, W., Taamalli, W., Fernandez, X., Lizzani-Cuvelier, L., and Zarrouk, M. (2008). Characterization of Volatiles in Virgin Olive Oil Produced in the Tunisian Area of Tataouine. J Agric Food Chem 56:7992–7998.

      Pedan, V., Popp, M., Rohn, S., Nyfeler, M., & Bongartz, A. (2019). Characterization of Phenolic Compounds and Their Contribution to Sensory Properties of Olive Oil. Molecules, 24(11), 2041.

      Pérez, A.G., de la Rosa, R., Pascual, M., Sánchez-Ortiz, A., Romero-Segura, C., León, L., and Sanz, C. (2016). Assessment of volatile compound profiles and the deduced sensory significance of virgin olive oils from the progeny of Picual×Arbequina cultivars. J Chromatogr A 1428:305–315.

      Pérez, A. G., León, L., Pascual, M., Romero-Segura, C., Sánchez-Ortiz, A., de la Rosa, R., & Sanz, C. (2014). Variability of Virgin Olive Oil Phenolic Compounds in a Segregating Progeny from a Single Cross in Olea europaea L. and Sensory and Nutritional Quality Implications. PLOS ONE, 9(3), e92898.

      Pritchard, J.K., Stephens, M., Donnelly, P., (2000). Inference of Population Structure Using Multilocus Genotype Data. Genetics 155, 945–959.

      Procida, G., Cichelli, A., Lagazio, C., and Conte, L.S. Relationships between volatile compounds and sensory characteristics in virgin olive oil by analytical and chemometric approaches: Volatile compounds and sensory characteristics of olive oil. J Sci Food Agric 96:311–318.

      Quintanilla-Casas, B., Bustamante, J., Guardiola, F., García-González, D. L., Barbieri, S., Bendini, A., Toschi, T. G., Vichi, S., & Tres, A. (2020). Virgin olive oil volatile fingerprint and chemometrics: Towards an instrumental screening tool to grade the sensory quality. LWT – Food Science and Technology, 121, 108936. Radd-Vagenas, S., Kouris-Blazos, A., Singh, M.F., Flood, V.M. (2017). Evolution of Mediterranean diets and cuisine: concepts and definitions. Asia Pacific Journal of Clinical Nutrition, 26 (5), 749-763.

      Roca, L. F., Moral, J., Trapero, C., Blanco‐López, M. Á., and López‐Escudero, F. J. (2016). Effect of inoculum density on Verticillium wilt incidence in commercial olive orchards. Journal of Phytopathology. 164:61–64.

      Rodríguez-Jurado, D. (1993). Interacciones huésped-parásito en la marchitez del olivo (Olea europaea L.) inducida por Verticillium dahliae Kleb. PhD Thesis, University of Córdoba, Spain (in Spanish).

      Rodríguez-Jurado, D., Moraño-Moreno, R., Bejarano-Alcázar, J. (2008). Dispersion of defoliating and non-defoliating pathotype of Verticillium dahliae in host crops by irrigation water in southern Spain. European Journal of Plant Pathology. 90:419–420.

      Romero, N., Saavedra, J., Tapia, F., Sepúlveda, B., and Aparicio, R. (2016). Influence of agroclimatic parameters on phenolic and volatile compounds of Chilean virgin olive oils and characterization based on geographical origin, cultivar and ripening stage: Effect of agroclimatic parameters on compounds responsible for the flavor of EVOO. J Sci Food Agric 96:583–592.

      Runcio A, Sorgonà L, Mincione A, Santacaterina S, and Poiana M. (2008). Volatile compounds of virgin olive oil obtained from Italian cultivars grown in Calabria. Food Chem 106:735–740.

      Saitou, N., Nei, M., (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

      Salas, JJ. (2004). Characterization of Alcohol Acyltransferase from Olive Fruit. J Agric Food Chem 52:3155–3158.

      Sales, C., Portolés, T., Johnsen, L.G., Danielsen, M., and Beltran, J. (2019). Olive oil quality classification and measurement of its organoleptic attributes by untargeted GC–MS and multivariate statistical-based approach. Food Chem 271:488–496.

      Sánchez-Ortiz, A., Bejaoui, M.A., Quintero-Flores, A., Jiménez A., and Beltrán, G. (2018). Biosynthesis of volatile compounds by hydroperoxide lyase enzymatic activity during virgin olive oil extraction process. Food Res Int 111:220–228.

      Sánchez-Ortiz, A., Pérez, A.G., and Sanz, C. (2007). Cultivar Differences on Nonesterified Polyunsaturated Fatty Acid as a Limiting Factor for the Biogenesis of Virgin Olive Oil Aroma. J Agric Food Chem 55:7869–7873.

      Sánchez-Ortiz, A., Pérez, A.G., and Sanz, C. (2013). Synthesis of aroma compounds of virgin olive oil: Significance of the cleavage of polyunsaturated fatty acid hydroperoxides during the oil extraction process. Food Res Int 54:1972–1978.

      Sánchez-Ortiz, A., Romero, C., Pérez, A.G., and Sanz, C. (2008). Oxygen Concentration Affects Volatile Compound Biosynthesis during Virgin Olive Oil Production. J Agric Food Chem 56:4681–4685.

      Sánchez-Ortiz, A., Romero-Segura, C., Gazda, V.E., Graham, I.A., Sanz, C., and Pérez, A.G. (2012). Factors Limiting the Synthesis of Virgin Olive Oil Volatile Esters. J Agric Food Chem 60:1300–1307.

      Sánchez-Ortiz, A., Romero-Segura, C., Sanz, C., and Pérez, A.G. (2012). Synthesis of Volatile Compounds of Virgin Olive Oil Is Limited by the Lipoxygenase Activity Load during the Oil Extraction Process. J Agric Food Chem 60:812–822.

      Sanei, S. J., and Razavi, S. E. (2017). Resistance and vegetative growth analysis of some olive cultivars in response to a defoliating pathotype of Verticillium dahliae Kleb. International Journal of Horticultural Science and Technology. 4:239–250.

      Santos-Antunes, F., León, L., Rosa, R. de la, Alvarado, J., Mohedo, A., Trujillo, I., Rallo, L., (2005). The Length of the Juvenile Period in Olive as Influenced by Vigor of the Seedlings and the Precocity of the Parents. HortScience 40, 1213–1215.

      Santos‐Rufo, A., Hidalgo, J. J., Hidalgo, J. C., Vega, V., and Rodríguez‐Jurado, D. (2018). Morphophysiological response of young olive trees to Verticillium wilt under different surface drip irrigation regimes. Plant Pathology. 67:848–859.

      Santos‐Rufo, A., Vega, V., Hidalgo, J. J., Hidalgo, J. C., and Rodríguez‐Jurado, D. (2017). Assessment of the effect of surface drip irrigation on Verticillium dahliae propagules differing in persistence in soil and on verticillium wilt of olive. Plant Pathology. 66:1117–1127.

      Sanz, C., Belaj, A., Sánchez-Ortiz, A., and Pérez, A. (2018). Natural Variation of Volatile Compounds in Virgin Olive Oil Analyzed by HS-SPME/GC-MS-FID. Separations 5:24.

      Schilirò, E., Ferrara, M., Nigro, F., Mercado-Blanco, J., (2012). Genetic Responses Induced in Olive Roots upon Colonization by the Biocontrol Endophytic Bacterium Pseudomonas fluorescens PICF7. PLOS ONE 7, e48646.

      Servili, M., Conner, J. M., Piggott, J. R., Withers, S. J., & Paterson, A. (1995). Sensory characterisation of virgin olive oil and relationship with headspace composition. Journal of the Science of Food and Agriculture, 67(1), 61–70.

      Simko, I., Haynes, K.G., Ewing, E.E., Costanzo, S., Christ, B.J., Jones, R.W., (2004). Mapping genes for resistance to Verticillium albo-atrum in tetraploid and diploid potato populations using haplotype association tests and genetic linkage analysis. Mol Genet Genomics 271, 522–531.

      Şişik Oğraş Ş, Kaban G, and Kaya M. (2018). Volatile compounds of olive oils from different geographic regions in Turkey. Int J Food Prop 21:1833–1843.

      Tajima, F., (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595.

      Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30, 2725–2729.

      Temime, S.B., Campeol, E., Cioni, P.L., Daoud, D., and Zarrouk, M. (2006). Volatile compounds from Chétoui olive oil and variations induced by growing area. Food Chem 99:315–325.

      Thompson, J.D., Higgins, D.G., Gibson, T.J., (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.

      Trapero, C., Díez, C. M., Rallo, L., Barranco, D., and López-Escudero, F. J. (2013). Effective inoculation methods to screen for resistance to Verticillium wilt in olive. Scientia Horticulturae. 162:252–259.

      Trapero, C., Rallo, L., López‐Escudero, F. J., Barranco, D., and Díez, C. M. 2015. Variability and selection of verticillium wilt resistant genotypes in cultivated olive and in the Olea genus. Plant Pathology. 64:890–900.

      Trapero, C., Serrano, N., Arquero, O., Del Río, C., Trapero, A., and López-Escudero, F. J. (2013). Field resistance to Verticillium wilt in selected olive cultivars grown in two naturally infested soils. Plant Disease. 97:668–674.

      Trujillo, I., Ojeda, M.A., Urdiroz, N.M., Potter, D., Barranco, D., Rallo, L., Diez, C.M., (2014). Identification of the Worldwide Olive Germplasm Bank of Córdoba (Spain) using SSR and morphological markers. Tree Genetics & Genomes 10, 141–155.

      Tura, D., Failla, O., Bassi, D., Pedò, S., and Serraiocco, A. (2008). Cultivar influence on virgin olive (Olea europea L.) oil flavor based on aromatic compounds and sensorial profile. Sci Hortic 118:139–148.

      Unver, T., Wu, Z., Sterck, L., Turktas, M., Lohaus, R., Li, Z., Yang, M., He, L., Deng, T., Escalante, F.J., Llorens, C., Roig, F.J., Parmaksiz, I., Dundar, E., Xie, F., Zhang, B., Ipek, A., Uranbey, S., Erayman, M., Ilhan, E., Badad, O., Ghazal, H., Lightfoot, D.A., Kasarla, P., Colantonio, V., Tombuloglu, H., Hernandez, P., Mete, N., Cetin, O., Van Montagu, M., Yang, H., Gao, Q., Dorado, G., Van de Peer, Y., (2017). Genome of wild olive and the evolution of oil biosynthesis. Proc Natl Acad Sci U S A 114, E9413–E9422.

      Valli, E., Panni, F., Casadei, E., Barbieri, S., Cevoli, C., Bendini, A., García-González, D.L., Gallina Toschi, T., (2020). An HS-GC‐IMS Method for the Quality Classification of Virgin Olive Oils as Screening Support for the Panel Test. Foods 9, 657.

      Varo, A, Moral, J., Lozano-Tóvar, M. D., and Trapero, A. (2016). Development and validation of an inoculation method to assess the efficacy of biological treatments against Verticillium wilt in olive trees. BioControl. 61:283–292.

      Varo, A., Raya‐Ortega, M. C., and Trapero, A. (2016). Enhanced production of microsclerotia in recalcitrant Verticillium dahliae isolates and its use for inoculation of olive plants. Journal of Applied Microbiology. 121:473–484.

      Velasco, L., Fernandez-Cuesta, A., De la Rosa, R., Victoria Ruiz-Mendez, M., & Leon, L. (2014). Selection for Some Olive Oil Quality Components Through the Analysis of Fruit Flesh. Journal of the American Oil Chemists Society, 91(10), 1731-1736.

      Vichi, S., Guadayol, J.M., Caixach, J., López-Tamames, E., and Buxaderas, S. (2006). Monoterpene and sesquiterpene hydrocarbons of virgin olive oil by headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry. J Chromatogr A 1125:117–123.

      Vichi, S., Pizzale, L., Conte, L.S., Buxaderas, S., and López-Tamames, E. (2003). Solid-Phase Microextraction in the Analysis of Virgin Olive Oil Volatile Fraction: Characterization of Virgin Olive Oils from Two Distinct Geographical Areas of Northern Italy. J Agric Food Chem 51:6572–6577.

      Wally, O., Punja, Z.K., (2010). Genetic engineering for increasing fungal and bacterial disease resistance in crop plants. GM Crops 1, 199–206.

      Wang, W., Sun, Y., Han, L., Su, L., Xia, G., Wang, H., (2017). Overexpression of GhPFN2 enhances protection against Verticillium dahliae invasion in cotton. Sci. China Life Sci. 60, 861–867.

      Xu, L., Zhu, L., Tu, L., Liu, L., Yuan, D., Jin, L., Long, L., Zhang, X., (2011). Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J. Exp. Bot. 62, 5607–5621.

      Yadeta, K.A., J. Thomma, B.P.H., (2013). The xylem as battleground for plant hosts and vascular wilt pathogens. Front Plant Sci 4.

      Yang, L., Shi, C., Mu, X., Liu, C., Shi, K., Zhu, W., Yang, Q., (2015). Cloning and expression of a wild eggplant cytochrome P450 gene, StoCYP77A2, involved in plant resistance to Verticillium dahliae. Plant Biotechnol Rep 9, 167–177.

      Yang, P., Habekuß, A., Hofinger, B.J., Kanyuka, K., Kilian, B., Graner, A., Ordon, F., Stein, N., (2017). Sequence diversification in recessive alleles of two host factor genes suggests adaptive selection for bymovirus resistance in cultivated barley from East Asia. Theor Appl Genet 130, 331–344.

      Youssef, O., Guido, F., Manel, I., Youssef, N.B., Luigi, C.P., Mohamed, H., Daoud, D., and Mokhtar, Z. (2011). Volatile compounds and compositional quality of virgin olive oil from Oueslati variety: Influence of geographical origin. Food Chem 124:1770–1776.

      Yuan, C.P., Wang, Y.J., Zhao, H.K., Zhang, L., Wang, Y.M., Liu, X.D., Zhong, X.F., Dong, Y.S., (2016). Genetic diversity of rhg1 and Rhg4 loci in wild soybeans resistant to soybean cyst nematode race 3. Genet. Mol. Res. 15.

      Zhang, Y., Wang, X.F., Ding, Z.G., Ma, Q., Zhang, G.R., Zhang, S.L., Li, Z.K., Wu, L.Q., Zhang, G.Y., Ma, Z.Y., (2013). Transcriptome profiling of Gossypium barbadense inoculated with Verticillium dahliae provides a resource for cotton improvement. BMC Genomics 14, 637.

      Zhu, S., Niu, E., Shi, A., Mou, B., (2019). Genetic Diversity Analysis of Olive Germplasm (Olea europaea L.) With Genotyping-by-Sequencing Technology. Front. Genet. 10.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno