Ayuda
Ir al contenido

Dialnet


Mixed finite elements with independent strain interpolation for isotropic and orthotropic damage

  • Autores: Gabriel Barbat Vlad
  • Directores de la Tesis: Miguel Cervera Ruiz (dir. tes.), Michele Chiumenti (codir. tes.)
  • Lectura: En la Universitat Politècnica de Catalunya (UPC) ( España ) en 2021
  • Idioma: español
  • Materias:
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The numerical modelling of fracture has been an active topic of research for over five decades. Most of the approaches employed rely on the use of the Finite Element Method, which has shown to be an effective and cost-efficient tool for solving many physical phenomena. However, the issue of the spurious dependency of the computed solution with the mesh orientation in cracking problems has raised a great concern since its early reports in the 1980s. This matter has proved to be a major challenge in computational solid mechanics; it affects numerous methods employed to solve the problem, in which the computed crack trajectories are spuriously dependent on the arrangement of the finite element (FE) mesh employed. When performing a structural analysis and, in particular, when computing localized failure, it is fundamental to use a reliable and mesh objective method to be able to trust the results produced by the FE code in terms of the fracture paths, bearing capacity, collapse mechanism and nonlinear responses.

      In this doctoral thesis, the mixed e/u strain/displacement finite element method is used together with multiple isotropic and orthotropic damage constitutive laws for the numerical modelling of quasi-brittle fracture with mesh objectivity. The independent interpolation of the strains increases the accuracy of the computed solution, guaranteeing the local convergence of the stress and strain fields. This feature is a crucial improvement over the standard FE formulation in solid mechanics where the strains are computed as local derivatives of the displacements and the local convergence of the resulting stresses and strains is not ensured. The enhanced precision provided by the mixed formulation in the area near the crack tip is decisive for obtaining unbiased numerical results with regard to the orientation of the FE mesh.

      The strain-driven format of the mixed formulation enables to readily consider different constitutive laws defined in a stress-strain structure in the numerical simulations. The thesis includes the study of the effect of the material model employed in the resulting crack trajectories as well as the analysis of the relative performance of several isotropic and orthotropic damage behaviors in mode I, mode II, mode III and mixed mode fracture problems.

      In this work specific isotropic and orthotropic damage laws are proposed for the numerical modelling of fracture under cyclic loading, which include tensile and compressive damage, stiffness recovery due to crack closure and reopening, as well as irreversible strains. Also, the capacity of the proposed model in reproducing the structural size effect is examined, which is an essential requirement for models aiming at computing quasi-brittle behavior.

      In this thesis, a comprehensive comparison of the mixed FE formulation with other techniques employed for computing fracture, specifically the Extended Finite Element Method (XFEM) and the Phase-field model, is made, revealing the cost-efficiency of the proposed Mixed Finite Element Method for modelling quasi-brittle cracking with mesh objectivity. This allows to perform the analysis of real-scale structures, in 2D and 3D, with enhanced accuracy, demonstrating the applicability of this method in the engineering practice. The validation of the model is performed with an extensive comparison of computed results with existing experimental tests and numerical benchmarks. The capacity of the mixed formulation in reproducing force-displacement curves, crack trajectories and collapse mechanisms with enhanced accuracy is demonstrated in detail.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno